Path: blob/master/latex/A.3 Introduction to Lévy processes and PIDEs.tex
1689 views
\documentclass[a4paper,10pt]{article}1\usepackage[utf8]{inputenc}23\usepackage {graphicx}4\usepackage {amsfonts}5\usepackage{amsmath}6\usepackage{hyperref}7\usepackage{amsthm}8\usepackage{mathtools}9\usepackage{bbm}10\usepackage{dsfont}11\usepackage{textcomp}12\usepackage[colorinlistoftodos]{todonotes}13\usepackage{algorithm,algorithmic}14\usepackage{booktabs}1516%\usepackage{natbib}1718%Options: Sonny, Lenny, Glenn, Conny, Rejne, Bjarne, Bjornstrup19\usepackage[Bjornstrup]{fncychap}20%\usepackage{blindtext}21\usepackage{minitoc}222324\newcommand{\HRule}{\rule{\linewidth}{0.5mm}}25% \renewcommand{\abstractname}{Motivations}2627\newcommand{\numberset}{\mathbb}28\newcommand{\N}{\numberset{N}}29\newcommand{\R}{\numberset{R}}30\newcommand{\E}{\numberset{E}}31\newcommand{\C}{\numberset{C}}32\newcommand{\PP}{\numberset{P}}33\newcommand{\Q}{\numberset{Q}}34\newcommand{\SI}{\mathcal{S}}35\newcommand{\LL}{\mathcal{L}}36\newcommand{\I}{\mathcal{I}}37\newcommand{\F}{\mathcal{F}}38\newcommand{\OO}{\mathcal{O}}39\newcommand{\xx}{\mathrm{x}}404142\newtheorem{Theorem}{Theorem}[section]43\newtheorem{Definition}{Definition}[section]44\newtheorem{Corollary}{Corollary}[section]45\newtheorem{Remark}{Remark}46\newtheorem{scheme}[]{Scheme}4748\newtheoremstyle{exampstyle}49{\topsep} % Space above50{\topsep} % Space below51{} % Body font52{} % Indent amount53{\bfseries} % Theorem head font54{.} % Punctuation after theorem head55{.5em} % Space after theorem head56{} % Theorem head spec (can be left empty, meaning `normal')575859% riquadro attorno al testo60\newbox{\riquadrobox}61\newenvironment{riquadro}[1]62{\setlength{\dimen255}{\parindent}%63\begin{lrbox}{\riquadrobox}\begin{minipage}{#1}64\setlength{\parindent}{\dimen255}}65{\end{minipage}\end{lrbox}\fbox{\usebox{\riquadrobox}}}6667%%%%%%%%% A different title68%\usepackage{titlesec, blindtext, color}69%\definecolor{gray75}{gray}{0.75}70%\newcommand{\hsp}{\hspace{20pt}}71%\titleformat{\chapter}[hang]{\Huge\bfseries}{\thechapter\hsp\textcolor{gray75}{|}\hsp}{0pt}{\Huge\bfseries}7273\makeatletter74%\newcommand{\ALOOP}[1]{\ALC@it\algorithmicloop\ #1%75% \begin{ALC@loop}}76%\newcommand{\ENDALOOP}{\end{ALC@loop}\ALC@it\algorithmicendloop}77\renewcommand{\algorithmicrequire}{\textbf{Input:}}78\renewcommand{\algorithmicensure}{\textbf{Output:}}79\newcommand{\algorithmicbreak}{\textbf{break}}80\newcommand{\BREAK}{\STATE \algorithmicbreak}8182\title{\textsc{An introduction to Lévy processes and PIDEs}\\ \small with applications to Merton and Variance Gamma processes}8384\author{ Nicola Cantarutti }858687\begin{document}8889\maketitle9091\begin{abstract}92In this brief introduction I have tried to summarize all the most important concepts regarding Lévy's processes.93The goal is to introduce the formalism and the tools necessary to derive the partial integro-differential equation (PIDE)94for pricing financial derivatives, when the underlying stock price is modeled by the exponential of a Lévy process.95These arguments are not simple and the reader is required to have a good knowledge of the basics of stochastic calculus and financial mathematics.96However, a complete list of references and tutorials for beginners will be presented.\\97At the end of the tutorial I will make a thorough presentation of the cases of the Merton and Variance Gamma process. I will also present the Black-Scholes PDE, which is a98special case when the Lévy process under consideration is the Brownian motion.99\end{abstract}100101102103\tableofcontents104105\newpage106107Over the past thirty years, a lot of research has been done on processes with jumps and their applications to financial derivatives.108Let us start with the list of references.109110\noindent111A good tutorial for beginners is \cite{papapa}. I really suggest to read this tutorial because it is very clear, compact, and gives a good overview of the theory and applications112of Lévy processes. The article can be found on the Arxiv web page: \url{https://arxiv.org/abs/0804.0482}.113114If you are looking for some more challenging references I suggest115\cite{Sato}, which is a reference book for the theory of Lévy processes, and116\cite{Applebaum} that gives more emphasis on stochastic calculus and stochastic differential equations (SDEs). These two books are very rigorous mathematical books.117118Comprehensive guides on applications of Lévy processes in finance are the books of119\cite{Cont} and \cite{Schoutens}. These books are also accessible to beginners.120121Among the most popular Lévy processes applied to finance, it is worth to mention:122\begin{itemize}123\item[-] the Merton jump-diffusion model \cite{Me76}124\item[-] the Kou jump-diffusion model \cite{Kou02}125\item[-] the $\alpha$-stable \cite{Ma63}, \cite{BoPoCo97}, \cite{alpha09}126\item[-] the Variance-Gamma (VG) \cite{MaSe90}, \cite{MCC98}127\item[-] the Normal-Inverse-Gaussian (NIG) \cite{BN97}128\item[-] hyperbolic Lévy processes \cite{EbKe95}129\item[-] Carr-Geman-Madan-Yor (CGMY) model \cite{CGMY02}130\end{itemize}131132We begin with the most important definitions concerning the theory of Lévy processes and the stochastic calculus applied to jump processes.133134These definitions are very quite abstract. I encourage the reader to have a look at \cite{papapa} for more practical examples, or to read135the first three chapters of \cite{Cont}. Sometimes it is enough to have a look at wikipedia, in order to clarify the ideas.136Here, I prefer to give a very short presentation of the main concepts, and dedicate more space to the second part of the tutorial.137138In the second part we focus on the derivation of the PIDE for option pricing and on the exponential Lévy models used in this tutorial:139the \emph{Merton} and \emph{Variance Gamma} models.140In this part of the tutorial, I will present all the calculation step by step.141142143144\section{Basic definitions}145146Let $\{X_t\}_{t \ge 0}$ be a stochastic process defined on a probability space $(\Omega,\mathcal{F},\{\mathcal{F}_t\}_{t \ge 0}),\PP)$,147where $\mathcal{F}_t$ is the filtration to which the process $\{X_t\}_{t \ge 0}$ is adapted and represents the accumulated ``information'' up to time $t$.\\148\begin{Definition}\label{LevyDef}149We say that $\{X_t\}_{t \ge 0}$ is a \textbf{Lévy Process} if:150\begin{itemize}151\item[(\textbf{L1})] $X_{t=0} = 0$.152\item[(\textbf{L2})] $\{X_t\}_{t \ge 0}$ has independent increments i.e. $X_t - X_s$ is independent of $\mathcal{F}_s$ for any $0 \leq s < t$.153\item[(\textbf{L3})] $\{X_t\}_{t \ge 0}$ has stationary increments i.e. for any $s,t \geq 0$, the distribution of $X_{t+s} - X_t$ does not depend on $t$.154\item[(\textbf{L4})] $\{X_t\}_{t \ge 0}$ is stochastically continuous i.e. for every $\epsilon > 0 $ and $t \ge 0$ $$\lim_{h\to 0} \PP(|X_{t+h}-X_t| > \epsilon)=0. $$155\end{itemize}156\end{Definition}157It can be proven that Lévy processes have ``cádlág''158paths, i.e. paths which are right-continuous and have left limits.159160%Lévy processes are intrinsically connected with infinitely divisible distributions. In particular the Lévy-Khintchine formula161%for infinitely divisible random variables, is an essential tool for the classification of the Lévy processes by the form of their162%characteristic functions.163164\begin{Definition} \label{chf}165Let $X: \Omega \to \R$ be a random variable.\\166The \textbf{Characteristic function} $\phi_X:\R \to \C$ of $X$, is defined by167\begin{align}168\phi_{X}(u) &= \E [e^{iuX}] \nonumber \\169&= \int_{\Omega} e^{iuX} \PP(d\omega) \nonumber \\170&= \int_{\R} e^{iux} f_X dx.171\end{align}172for each $u \in \R$. Where $\omega \in \Omega$, and we indicated with $f_X = \frac{d\PP}{dx}$ the \textbf{probability density function} (pdf) of $X$.173\end{Definition}174For each $n \in \N$ , if $\E\bigl[ |X^{n}| \bigr] < \infty$, then175\begin{equation}\label{moments}176\E\bigl[ X^{n} \bigr] = i^{-n}\frac{\partial^n}{\partial u^{n}} \phi_X(u) \biggr|_{u=0} .177\end{equation}178With this property it is straightforward to compute the moments of all orders, as long as we know the analytic form179of the characteristic function.180181\subsection{Lévy-Khintchine representation}182183We now present a beautiful formula, first established by Paul Lévy and A.Ya. Khintchine in the 1930s184which gives a characterization of every infinitely divisible random variable.\\185186\begin{Definition} \label{Levy_measure}187Let $\nu(dx)$ be a measure on $\R$. We say it is a \textbf{Lévy measure} if it satisfies188\begin{equation}189\nu (\{ 0 \} ) = 0,190\end{equation}191\begin{equation} \label{Levy_m}192\int_{\R} \min\{1, x^2\} \nu(dx) < \infty.193\end{equation}194\end{Definition}195The characteristic function of a Lévy processes at a fixed time $t\geq 0$ has the following \textbf{Lévy Khintchine representation}:196\begin{Theorem}197Let $X_t$ be the random value of a Lévy process at time $t\geq0$. Then there exist $b\in R$, $\sigma>0$198and a Lévy measure $\nu$ on $\R$, such that $\forall u \in \R$:199\begin{align}200\phi_{X_t}(u) &= \mathbb{E} [e^{iuX_t}] \\201&= e^{t \eta(u)} \nonumber \\202&= \exp \left[ t \left( ibu - \frac{1}{2} \sigma^2 u^2 + \int_{\R}203( e^{iux} -1 -iux \mathbbm{1}_{(|x|<1)}(x) ) \nu(dx) \right) \right]. \nonumber204\end{align}205\end{Theorem}206A proof can be found in \cite{Applebaum} (Theorem 1.2.14).\\207208\begin{itemize}209\item We call the map $\eta : \R \to \C$, the \textbf{Lévy symbol}.210\item The triplet $(b, \sigma, \nu)$ is called \textbf{Lévy triplet}, and completely characterizes the Lévy process.211\end{itemize}212213214215216217\subsection{Random measures}\label{random_measures}218219A convenient tool for analyzing the jumps of a Lévy process is the random220measure of the jumps of the process.221The jump process $\{\Delta X_t\}_{t \ge 0}$ associated to the Lévy process $\{X_t\}_{t \ge 0}$ is222defined, for each $t \geq 0$ , by223\begin{equation}\label{jump}224\Delta X_t = X_t - X_{t^-}225\end{equation}226where $X_{t^-} = \lim_{s\uparrow t} X_s $.\\227\begin{Definition}228Consider an open set $A \subseteq \R \backslash \{ 0 \})$.229We define the \textbf{random measure} of the jumps of the process $\{X_t\}_{t \ge 0}$ by230\begin{align}231N^X(t,A)(\omega) &= \# \{ s \in [0,t] \, : \; \Delta X_s(\omega) \in A \} \\232&= \sum_{0 \leq s \leq t} \mathbbm{1}_A(\Delta X_s(\omega)) . \nonumber233\end{align}234\end{Definition}235\noindent236For each $\omega \in \Omega$ and for each $0 \leq t < \infty$, the map237$$ A \to N^X(t,A)(w) $$238is a counting measure i.e. it counts the number of jumps of the process $\{X_t\}_{t\geq0}$ with size in $A$ up to time $t$.\\239We say that $A$ is \emph{bounded below} if $0 \not \in \bar A$ i.e. zero does not belong to the closure of $A$.240241\begin{itemize}242\item For each $A$ bounded below, the process $\bigl \{ N^X(t,A)(\omega) \bigr \}_{t\geq 0}$ is a \textbf{Poisson process} with intensity243\begin{equation}\label{Expect_N}244\nu(A) = \mathbb{E}[N^X(1,A) ]245\end{equation}246\item If $A_1, ..., A_m$ are disjoint subsets of $\R \backslash \{ 0 \})$ and bounded below and $t_1, ..., t_m$ are distinct non-negative times, then247the random variables $N(t_1,A_1), ..., N(t_m,A_m)$ are independent.248\end{itemize}249A random measure satisfying the properties above is called \textbf{Poisson random measure}.\\250If $A$ is not bounded below, it is possible to have $\nu(A) = \infty$.251252We can also define the \textbf{Compensated Poisson random measure}. For each $t \geq 0$ and $A$ bounded below, let us define:253\begin{equation}254\tilde{N}(t,A) = N(t,A) - t\nu(A).255\end{equation}256This is a martingale-valued measure, i.e. for each $A$ the process $\bigl \{ \tilde{N}(t,A) \bigr \}_{t\geq 0} $ is a martingale.257258259\noindent260Now we can define the integration with respect to a random measure:261\begin{Definition} \label{Poisson_int}262Let $N$ be the Poisson random measure associated to a Lévy process $\{X_t\}_{t \geq 0}$, and let $f:\R \to \R$ be a measurable263function. For any $A$ bounded below, we define the \textbf{Poisson integral} of $f$ as264\begin{equation}265\int_A f(x) N(t,dx) = \sum_{x\in A} f(x) N(t,\{x\}).266\end{equation}267\end{Definition}268\noindent269Since $N(t,\{x\}) \neq 0 \Leftrightarrow \Delta X_s=x$ for at least one $s\in [0,t]$, we have270\begin{equation}271\int_A f(x) N(t,dx) = \sum_{0 \leq s \leq t} f(\Delta X_s) \mathbbm{1}_A(\Delta X_s).272\end{equation}273We can also define in the same way the \textbf{compensated Poisson integral}274\begin{equation}275\int_A f(x) \tilde{N}(t,dx) := \int_A f(x) N(t,dx) - t \int_A f(x) \mu(dx),276\end{equation}277We can further define:278\begin{equation}279\int_{|x|<1} f(x) \tilde N(t,dx) := \lim_{\epsilon \to 0} \int_{\epsilon < |x| < 1} f(x) \tilde N(t,dx),280\end{equation}281that represents the compensated sum of small jumps.282283284\subsection{Lévy-It\={o} decomposition} \label{LevyIto_sec}285286The following is a fundamental theorem which decomposes a general Lévy process in a superposition287of independent processes: a drift term, a Brownian motion, a Poisson process with ``big jumps'' and a compensated Poisson process with ``small jumps''.288289\begin{Theorem}290Given a Lévy process $\{X_t\}_{t \ge 0}$ , there exist $b\in \R$, a Brownian motion $W$ with variance $\sigma^2$, and an291independent Poisson random measure $N$ on $[0,\infty) \times \R$ such that292\begin{equation}\label{Levy_Ito}293X_t = bt + \sigma W_t + \int_{|x|<1} x \tilde{N}(t,dx) + \int_{|x|\geq1} x N(t,dx).294\end{equation}295This is called \textbf{Lévy-It\={o} decomposition}.296\end{Theorem}297For a proof the reader can look at Theorem 2.4.16 in \cite{Applebaum}.\\298A lot of information on the features of a Lévy process can be derived from the integrability conditions of its Lévy measure.\\299Let $\{X_t\}_{t\geq0}$ be a Lévy process with Lévy measure $\nu$. Then300\begin{enumerate}301\item For all $t\geq0$, $X_t$ has finite p-moment i.e.302$\E[|X_t|^p]<\infty$ for $p\geq0$ if and only if $\int_{|x| \geq 1} |x|^p \nu(dx) <\infty$.303\item For all $t\geq0$, $X_t$ has finite exponential p-moment i.e. $\E[\exp(pX_t)]<\infty$ for $p\in \R$ if and only if304$\int_{|x| \geq 1} e^{xp} \nu(dx) <\infty$.305\end{enumerate}306307The majority of Lévy processes used in finance have finite moments.308For practical reasons, it makes sense to assume finite mean and variance of the price process.309In this tutorial we will model the 1-dimensional dynamics of the prices with the exponential of a Lévy process,310i.e. $S_t = S_0 e^{X_t}$. Let us introduce the important assumption:311\begin{center}312\begin{riquadro}{12cm}313\textbf{Assumption}:\\314We consider only Lévy processes with finite exponential second moment.\\315Therefore it follows that:316\begin{equation}\label{AssumptionEM}317\E\bigl[ S_t^2 \bigr] < \infty \quad \Leftrightarrow \quad \int_{|x| \geq 1} e^{2x} \nu(dx) <\infty318\end{equation}319\end{riquadro}320\end{center}321322The existence of the exponential 2-moment implies that $\{X_t\}_{t \geq 0}$ has finite p-moment for all $p \in \N$.323324325If we assume that $\{X_t\}_{t \geq 0}$ has finite first moment, we can simplify the Lévy-It\={o} decomposition,326by adding and subtracting the finite term $\int_{|x| \geq 1} x t\, \nu(dx)$327in (\ref{Levy_Ito}).328The decomposition has now the form:329\begin{equation}\label{Levy_Ito2}330X_t = \biggl( b+\int_{|x| \geq 1} x \nu(dx) \biggr)t + \sigma W_t + \int_{\R} x \tilde{N}(t,dx).331\end{equation}332333334Let us recall the definition of the \emph{total variation} $TV(f)$ of a function $f : [a,b] \to \R$335\begin{equation}336TV(f) = \sup_P \sum_{i=1}^n |f(t_i) - f(t_{i-1})|,337\end{equation}338where the supremum is taken over all $P$, the finite partitions $a=t_0 < t_1 < ... < t_n = b$ of the interval $[a,b]$.339A Lévy process is said to be of finite variation if its paths are of finite variation with probability 1.340341The variation of any Lévy processes is related with the behavior of the Lévy measure in the region $|x|<1$.\\342A Lévy process $\{X_t\}_{t \geq 0}$ with triplet $(b,\sigma,\nu)$ is of \textbf{finite variation} if and only if343\begin{equation}344\sigma = 0 \quad \mbox{ and } \quad \int_{|x| < 1} |x| \nu(dx).345\end{equation}346\noindent347If we assume that $\{X_t\}_{t \geq 0}$ has finite variation, the Lévy-It\={o} decomposition (\ref{Levy_Ito})348becomes349\begin{equation}\label{Levy_Ito3}350X_t = \biggl( b-\int_{|x| < 1} x \nu(dx) \biggr)t + \int_{\R} x N(t,dx).351\end{equation}352353354\subsection{The It\={o} formula and infinitesimal generator}355356Let us express the Lévy It\=o decomposition in the differential form:357\begin{equation}\label{Levy_Ito22}358dX_t = b\,dt + \sigma \, dW_t + \int_{|z|<1} z \tilde{N}(dt,dz) + \int_{|z|\geq1} z N(dt,dz).359\end{equation}360361Now we can introduce the most important formula in stochastic calculus: the \textbf{It\={o}'s formula}.362\begin{Theorem}363If $X_t$ is the Lévy process with dynamics as in (\ref{Levy_Ito22}), for each $f \in C^2(\R^n)$ we have364\begin{align} \label{Ito_form}365df(X_t) &= \frac{\partial f}{\partial x}(X_{t^-}) b dt + \frac{\partial f}{\partial x}(X_{t^-}) \sigma dW_t366+ \frac{1}{2} \frac{\partial^2 f}{\partial x^2}(X_{t^-}) \sigma^2 dt \\ \nonumber367&+ \int_{|z|\geq 1} \bigl[ f\bigl( X_{t^-} + z \bigr) - f( X_{t^-} ) \bigr] N(dt,dz) \\ \nonumber368&+ \int_{|z|< 1} \bigl[ f\bigl( X_{t^-} + z \bigr) - f(X_{t^-}) \bigr] \tilde N(dt,dz) \\ \nonumber369&+ \int_{|z|< 1} \bigl[ f\bigl( X_{t^-} + z \bigr) - f(X_{t^-}) - \frac{\partial f}{\partial x}(X_{t^-}) z \bigr] \nu(dz)dt. \nonumber370\end{align}371\end{Theorem}372The terms in the first line are the same of the well known diffusion case. The other terms comes from the discontinuous part of the process.\\373374\noindent375A Lévy process is a \textbf{Markov process}.376To be precise, a Lévy process is a \textbf{time homogeneous}, \textbf{translation invariant} Markov process. For more information on these topics, have a look at \cite{Applebaum}.\\377378We can define the \textbf{infinitesimal generator} $\LL^X : f \to \LL^X f$ of the Lévy process $X$ with triplet $(b,\sigma,\nu)$:379\begin{align}\label{genLevy}380(\LL^X f)(x) =& \; \lim_{t\to0} \frac{\E \bigl[ f(x + X_t) \bigr] - f(x) }{t} \\381=& \; b \frac{\partial f}{\partial x}(x) +382\frac{1}{2} \sigma^2 \frac{\partial^2 f}{\partial x^2}(x)\\383& + \int_{\R} \left( f(x+z) - f(x) - z \frac{\partial f}{\partial x}(x)384\mathbbm{1}_{\{ |z|<1 \}}(z) \right) \nu(dz). \nonumber385\end{align}386This works for functions twice continuously differentiable, and with nice behavior at infinity (usually they are required to have compact support, or to vanish at infinity or even387polynomial growth).388389If the Lévy process $\{X_t\}_{t \geq 0}$ has finite first moment i.e. with Lévy-It\=o decomposition (\ref{Levy_Ito2}), the generator has form:390\begin{align}\label{genLevy2}391(\LL^X f)(x) =& \; b \frac{\partial f}{\partial x}(x) +392\frac{1}{2} \sigma^2 \frac{\partial^2 f}{\partial x^2}(x)\\ \nonumber393& + \int_{\R} \left( f(x+z) - f(x) - z \frac{\partial f}{\partial x}(x) \right) \nu(dz).394\end{align}395396397398\section{Exponential Lévy models}\label{Section_ELM}399400401If we indicate with $S_t$ the stock price,402the name \textbf{exponential Lévy model} comes from the expression:403\begin{equation}\label{ELM}404S_t = S_0 e^{X_t} ,405\end{equation}406where $X_t$ is a one dimensional Lévy process with triplet $(b,\sigma,\nu)$.407408409\subsection{Exponential Lévy SDE}410411In order to obtain an SDE for $S_t$ in (\ref{ELM}), we apply the It\={o} formula (\ref{Ito_form}), and consider412the dynamics (\ref{Levy_Ito22}) for $X_t$:413\begin{align*}414d S_t \; &= S_0 e^{X_{t^-}} b dt \; + \; S_0 e^{X_{t^-}} \sigma dW_t \; + \; \frac{1}{2}S_0 e^{X_{t^-}}\sigma^2 dt \\ \nonumber415&+ \int_{|x|\geq 1} (S_0 e^{X_{t^-}+x} - S_0 e^{X_{t^-}}) N(dt,dx) \\ \nonumber416&+ \int_{|x|< 1} (S_0 e^{X_{t^-}+x} - S_0 e^{X_{t^-}}) \tilde N(dt,dx) \\ \nonumber417&+ \int_{|x|< 1} (S_0 e^{X_{t^-}+x} - S_0 e^{X_{t^-}} - x S_0 e^{X_{t^-}}) \nu(dx) dt. \nonumber418\end{align*}419After some substitutions we get:420\begin{align}421\frac{d S_t}{S_{t^-}} \; &= (b + \frac{1}{2}\sigma^2 ) dt + \sigma dW_t \\ \nonumber422&+ \int_{|x|< 1} ( e^{x} - x - 1) \nu(dx) dt \\ \nonumber423&+ \int_{|x|\geq 1} (e^{x} - 1) N(dt,dx) + \int_{|x|< 1} (e^{x} - 1) \tilde N(dt,dx). \nonumber424\end{align}425Thanks to the assumption (\ref{AssumptionEM}) we can simplify this equation.426First we look at the integrability conditions:427\begin{itemize}428\item $\int_{|x|\geq 1} e^{x} \nu(dx) < \infty$ by (\ref{AssumptionEM}).429\item $\int_{|x|\geq 1} 1\; \nu(dx) < \infty$ by definition (\ref{Levy_measure}) of $\nu$.430\end{itemize}431We can add and subtract $\pm \int_{|x|\geq 1} ( e^{x} - 1) \nu(dx) dt $ and obtain the final form432\begin{align} \label{exp_sde}433\frac{d S_t}{S_{t^-}} \; &= \left(b + \frac{1}{2}\sigma^2 + \int_{\R} ( e^{x} - 1 -x\mathbbm{1}_{|x|<1}) \nu(dx) \right) dt \\ \nonumber434&+ \sigma dW_t \; + \int_{\R} (e^{x} - 1) \tilde N(dt,dx). \nonumber435\end{align}436If we set437\begin{equation}\label{mu}438\mu := b + \frac{1}{2}\sigma^2 + \int_{\R} ( e^{x} - 1 -x\mathbbm{1}_{|x|<1}) \nu(dx)439\end{equation}440The SDE for $S_t$ becomes:441\begin{equation}\label{exp_sde2}442d S_t = \; \mu S_{t^-} dt + \sigma S_{t^-} dW_t \; + \int_{\R} S_{t^-} (e^{x} - 1) \tilde N(dt,dx).443\end{equation}444The same equation can be derived quickly by considering the Lévy-It\={o} form (\ref{Levy_Ito2}) for $X_t$:445\begin{align*}446d S_t \; =& \; S_0 e^{X_{t^-}} \biggl( b + \int_{|x|\geq 1}x \nu(dx) \biggr) dt \; + \; S_0 e^{X_{t^-}} \sigma dW_t \; + \; \frac{1}{2}S_0 e^{X_{t^-}}\sigma^2 dt \\ \nonumber447&+ \int_{\R} (S_0 e^{X_{t^-}+x} - S_0 e^{X_{t^-}}) \tilde N(dt,dx) + \int_{\R} (S_0 e^{X_{t^-}+x} - S_0 e^{X_{t^-}} - x S_0 e^{X_{t^-}}) \nu(dx) dt \\ \nonumber448=& \; S_{t^-} \biggl[ \mu dt + \sigma dW_t \; + \int_{\R} (e^{x} - 1) \tilde N(dt,dx) \biggr].\\449\end{align*}450451452453454\subsection{The Merton Model}\label{Merton_section}455456The first jump-diffusion model for the log-prices is the \emph{Merton model}, presented in457\cite{Me76}. In the same paper the author also obtains a closed form solution for the price of an European vanilla option.458The Merton model describes the log-price evolution with a Lévy process with a nonzero diffusion459component and a finite activity jump process with normal distributed jumps.460\begin{equation}\label{MertonM}461X_t = \bar b t + \sigma W_t + \sum_{i=1}^{N_t} Y_i,462\end{equation}463where $N_t$ is a Poisson random variable counting the jumps of $X_t$ in $[0,t]$, and $Y_i \sim \mathcal{N}(\alpha, \xi^2)$ is the size of the jumps.\\464Using the Poisson integral notation (Def. \ref{Poisson_int}), the process becomes465\begin{equation*}466X_t = \bar b t + \sigma W_t + \int_{\R} x N(t,dx)467\end{equation*}468The previous equation corresponds to the Lévy-It\={o} decomposition (\ref{Levy_Ito3}) with an additional Brownian motion term,469and with470$$\bar b = b - \int_{|x|<1} x \nu(dx).$$471The Lévy measure of a finite activity Lévy process, can be factorized in the activity $\lambda$ of the Poisson process and472the pdf of the jump size:473\begin{align}\label{Merton_measure}474\nu(dx) &= \lambda f_Y(dx), \\475&= \frac{\lambda}{\xi \sqrt{2\pi}} e^{- \frac{(x-\alpha)^2}{2\xi^2}} dx.476\end{align}477such that $\int_{\R} \nu(dx) = \lambda$.\\478479Since $\int_{|x|<1} x \nu(dx)$ is finite, the jump process has \textbf{finite variation}. However,480the Merton process has infinite variation because $\sigma >0$.481482The Lévy exponent has the following form:483\begin{equation}484\eta(u) = i\bar b u - \frac{1}{2} \sigma^2 u^2 + \lambda \biggl( e^{i\alpha u -\frac{\xi^2 u^2}{2} }-1 \biggr).485\end{equation}486\newline487Using the formula for the moments (\ref{moments}) we obtain:488\begin{align}\label{Merton_moments}489\E[X_t] &= t(\bar b+\lambda \alpha). \\ \nonumber490\mbox{Var}[X_t] &= t(\sigma^2 + \lambda \xi^2 + \lambda \alpha^2). \\ \nonumber491\mbox{Skew}[X_t] &= \frac{t\lambda (3\xi^2 \alpha + \alpha^3)}{\bigl(\mbox{Var}[X_t])^{3/2}}. \\ \nonumber492\mbox{Kurt}[X_t] &= \frac{t \lambda (3\xi^3 +6\alpha^2\xi^2 +\alpha^4)}{\bigl(\mbox{Var}[X_t]\bigr)^2}. \nonumber493\end{align} \newline494495496\subsection{The Variance Gamma process}\label{VG_section}497498The \emph{variance gamma} process is a pure jump Lévy process with infinite activity.499The first presentation with applications in finance is due to \cite{MaSe90}.500The model presented in their paper is however a symmetric VG model,501where there is only an additional parameter which controls the kurtosis, while the skewness is still not considered.\\502The non-symmetric VG process is described in \cite{MCC98} where a closed form solution for European vanilla options is also presented.\\503504If we consider a Brownian motion with drift $X_t = \theta t + \bar\sigma W_t$ and substitute the time variable with the gamma random variable505$T_t \sim \Gamma(t,\kappa t)$,506we obtain the \textbf{variance gamma} process:507\begin{equation}\label{VG_process}508X_{T_t} = \theta T_t + \bar\sigma W_{T_t} .509\end{equation}510It depends on three parameters:511\begin{itemize}512\item $\bar\sigma$, the volatility of the Brownian motion513\item $\kappa$, the variance of the Gamma process514\item $\theta$, the drift of the Brownian motion515\end{itemize}516The VG is a process with \textbf{finite variation}.517The pdf of $X_t$ can be computed conditioning on the realization of $T_t$:518\begin{align}\label{VG_density}519f_{X_t}(x) &= \int_y f_{X_t,T_t}(x,y) dy = \int_y f_{X_t|T_t}(x|y) f_{T_t}(y) dy \\ \nonumber520&= \int_0^{\infty} \frac{1}{\bar\sigma \sqrt{2\pi y}} e^{-\frac{(x -\theta y)^2}{2\bar\sigma^2 y}}521\frac{y^{\frac{t}{\kappa} -1}}{\kappa^{\frac{t}{\kappa}} \Gamma(\frac{t}{\kappa})}522e^{-\frac{y}{\kappa}} \, dy \\ \nonumber523&= \frac{2 \exp(\frac{\theta x}{\bar\sigma^2})}{\kappa^{\frac{t}{\kappa}} \sqrt{2\pi}\bar\sigma \Gamma(\frac{t}{\kappa}) }524\biggl( \frac{x^2}{2\frac{\bar\sigma^2}{\kappa} + \theta^2} \biggr)^{\frac{t}{2\kappa}-\frac{1}{4}}525K_{\frac{t}{\kappa}-\frac{1}{2}}526\biggl( \frac{1}{\bar\sigma^2} \sqrt{x^2 \bigl(\frac{2\bar\sigma^2}{\kappa}+\theta^2 \bigr)} \biggr),527\end{align}528where the function $K$ is a modified Bessel function of the second kind (see \cite{MCC98} for explicit computations).\\529The characteristic function can be obtained from the composition of the Gamma moment generating function and the Normal characteristic functions:530\begin{align*}531\phi_{X_t}(u) &= \biggl( 1- \kappa \bigl( i u\theta -\frac{1}{2}\bar\sigma^2 u^2 \bigr) \biggr)^{-\frac{t}{\kappa}} \\532&= \biggl( 1-i\theta \kappa u + \frac{1}{2} \bar\sigma^2 \kappa u^2 \biggr)^{-\frac{t}{\kappa}}.533\end{align*}534I will not prove the previous formula, but the interested reader can consult \cite{Applebaum} (Proposition 1.3.17 and Example 1.3.31) or \cite{Cont} (Theorem 4.2).\\535The VG Lévy measure is536\begin{equation}\label{VG_measure}537\nu^{X_t}(dx) = \frac{e^{\frac{\theta x}{\bar\sigma^2}}}{\kappa|x|} \exp538\left( - \frac{\sqrt{\frac{2}{\kappa} + \frac{\theta^2}{\bar\sigma^2}}}{\bar\sigma} |x|\right) dx,539\end{equation}540and the Lévy exponent is541\begin{equation}542\eta(u) = -\frac{1}{\kappa} \log(1-i\theta \kappa u + \frac{1}{2} \bar\sigma^2 \kappa u^2).543\end{equation}544Using the formula for the moments (\ref{moments}) we obtain:545\begin{align}\label{VG_cumulants}546\E[X_t] &= t\theta. \\ \nonumber547\mbox{Var}[X_t] &= t(\bar\sigma^2 + \theta^2 \kappa). \\ \nonumber548\mbox{Skew}[X_t] &= \frac{t (2\theta^3\kappa^2 + 3 \bar\sigma^2 \theta \kappa)}{\bigl(\mbox{Var}[X_t])^{3/2}}. \\ \nonumber549\mbox{Kurt}[X_t] &= \frac{t (3\bar\sigma^4 \kappa + 12\bar\sigma^2 \theta^2 \kappa^2 +6\theta^4\kappa^3)}{\bigl(\mbox{Var}[X_t]\bigr)^2}.\nonumber550\end{align}551\\552The Lévy-It\={o} decomposition (\ref{Levy_Ito3}) for any pure jump finite variation process,553can be written as554\begin{equation}\label{Levy_Ito4}555X_t = \bar b t + \int_{\R} x N(t,dx)556\end{equation}557with $\bar b = b - \int_{|x|<1} x \nu(dx)$.558559\noindent Let us consider the process (\ref{VG_process}). We can take its expectation560$$\E[X_{T_t}] = \theta \E[T_t] + \bar\sigma \E[W_{T_t}] = \theta t,$$561which must correspond to the expectation of (\ref{Levy_Ito4}). Using (\ref{Expect_N}) we obtain562\begin{align}563\E[X_t] &= \bar b t + \E \biggl[ \int_{\R} x N(t,dx)\biggr] \\ \nonumber564&= t \biggl( \bar b + \int_{\R} x \, \nu(dx) \biggr), \nonumber565\end{align}566and therefore $ \bar b = \theta - \int_{\R} x \nu(dx) $.\\567Let us compute this integral using the explicit formula (\ref{VG_measure}) for the Lévy measure.568Let us call $$A = \frac{\theta}{\bar\sigma^2} \hspace{2em} \mbox{and} \hspace{2em}569B=\frac{|\theta|}{\bar\sigma^2}\sqrt{1+\frac{2\bar\sigma^2}{\kappa \theta^2}}$$570with $A<B$, and solve the integral:571\begin{align*}572\int_{\R} \frac{x}{\kappa |x|} e^{Ax-B|x|} &= \int_{0}^{\infty} \frac{1}{\kappa} e^{(A-B)x}573- \int_{-\infty}^0 \frac{1}{\kappa} e^{(A+B)x} \\574&= \frac{1}{\kappa} \frac{2A}{B^2-A^2} \\575&= \theta.576\end{align*}577Interesting. We found that $\bar b = 0$.578The Lévy-It\={o} decomposition for the VG process in (\ref{VG_process}) is simply579\begin{equation}580X_t = \int_{\R} x N(t,dx).581\end{equation}582All the information is contained in the Lévy measure (\ref{VG_measure}),583which completely describes the process. Even if the process has been created by Brownian584subordination, it has no diffusion component. \\585The \textbf{L\'evy triplet} is586\begin{equation}\label{VG_triplet}587\biggl( \int_{|x|<1} x \nu(dx), 0, \nu \biggr).588\end{equation}589590591592\section{No-Arbitrage pricing}593594In an arbitrage-free market, if the price process $\{S_t\}_{t\geq0}$ follows an exponential Lévy process,595we can express the price of any simple financial derivative as a function $V(t,s)$ of the current time596$t \in [0,T]$ and current stock price $s=S_t$.597In this section we show that $V(t,s)$ can be obtained by solving a partial integro-differential equation (PIDE).598599Let us recall some useful definitions and theorems. For more information have a look at \cite{Cont}.600601The discount factor for $0 \leq s \leq t \leq T$ is defined as602\begin{equation}\label{discount_factor}603D(s,t) = e^{-\int_s^t r_u du}.604\end{equation}605In the following we assume a constant interest rate $r_u = r$ for all $u \in [0,T]$. \\606It is common to indicate with $\PP$ the physical probability measure and with $\Q$ a risk neutral measure, also called equivalent martingale measure (EMM).607\begin{Definition}608Given the asset price process $\{S_t\}_{t\geq0}$ defined on the probability space609$(\Omega,\mathcal{F},\{\mathcal{F}_{t}\}_{t\geq0},\PP)$, we say that the probability measure $\Q$ is an \textbf{EMM}610if it verifies the following two properties:611\begin{equation}612\Q \sim \PP : \quad \forall A \in \mathcal{F} \quad \quad \Q(A) = 0 \Leftrightarrow \PP(A) = 0,613\end{equation}614\begin{equation}615D(0,t) S_t = \E^{\Q} \bigl[ D(0,T) S_T \big| \F_t \bigr] \quad \mbox{for} \quad 0\leq t \leq T.616\end{equation}617\end{Definition}618619The concept of \textbf{arbitrage} is related with the existence of an equivalent martingale measures through the \textbf{first fundamental theorem of asset pricing}.620\begin{Theorem}621A market model does not admit arbitrage if and only if there exists a risk-neutral probability measure.622\end{Theorem}623Another important concept is the completeness of the market.624\begin{Definition}625A market model is said to be \textbf{complete} if the payoff of every derivative security can be perfectly hedged.626\end{Definition}627In a complete market, the unique price of a financial derivative corresponds to the initial capital needed to set up a perfect hedge.\\628The completeness of a market is connected with the uniqueness of the EMM through the629\textbf{second fundamental theorem of asset pricing}.630\begin{Theorem}631Consider a market model that has a risk-neutral probability measure. The model is complete if and only if the risk-neutral probability measure is unique.632\end{Theorem}633634The ideal market assumed by Black-Scholes is complete.635However, the majority of the models used in finance are not.636637In this tutorial, we analyze a market model based on exponential Lévy models, that is not complete.638639In a complete market there is only one arbitrage-free way to price a financial derivative, and the price is defined as the cost to replicate the derivative's payoff.640In an incomplete market, instead, the notion of perfect replication does not exist.641In in such a market, the class of EMM is infinite,642i.e. there are infinite EMMs such that the discounted stock prices are martingales.643This means that for every financial derivative there are infinite prices satisfying the condition of no-arbitrage.644645In order to overcome this problem, there are several methods to select the best EMM (see \cite{Cont}, chapter 10).646However, the best approach is to derive the model parameters directly from the prices of derivatives647already quoted in the market (usually European call and put options with different strikes and maturities).648The process of choosing the risk neutral parameters for a model that reproduces the prices in the market is called \textbf{model calibration}.649650651\subsection{Derivation of the pricing PIDE}652653654Let $\{X_t\}_{t\geq0}$ be a Lévy process with Lévy triplet $(b,\sigma,\nu)$, satisfying the assumption \ref{AssumptionEM}.655The process $\{S_t\}_{t\geq0}$ defined by $S_t = S_0 e^{X_t}$ is a martingale if and only if656\begin{equation}\label{martingale_b}657b +\frac{1}{2} \sigma^2 + \int_{\R} \bigl( e^z-1 -z\mathbbm{1}_{\{ |z|<1 \}} \bigr) \nu(dz) = 0.658\end{equation}659In order to prove it, we just need to look at the Eq. (\ref{exp_sde}). The exponential Lévy process is a martingale if and only if the drift is zero.660661Let us consider a stock price process described by the \emph{exponential Lévy model}662\begin{equation}\label{ELM2}663S_t = S_0 e^{L_t} = S_0 e^{rt + X_t}664\end{equation}665where $\{X_t\}_{t\geq 0}$ is a Lévy process with Lévy triplet $(b,\sigma,\nu)$, and the process $\{L_t\}_{t\geq 0}$666is a Lévy process with triplet $(r+b,\sigma,\nu)$.667Under a risk neutral measure $\Q$, the discounted price is a $\Q$-martingale:668\begin{equation}669\E^{\Q} \bigl[ e^{-rt} S_t \bigr| S_0 \bigr] = \E^{\Q} \bigl[ S_0e^{X_t} \bigr| S_0 \bigr] = S_0,670\end{equation}671such that $\E^{\Q}[ e^{X_t} | X_0=0] = 1 $.672673We can repeat the same computation that led to Eq. (\ref{exp_sde}) for the process $L_t = X_t + rt$ i.e.674\begin{align} \label{exp_sde_RN}675\frac{d S_t}{S_{t^-}} \; &= \left(r + b + \frac{1}{2}\sigma^2 + \int_{\R} ( e^{z} - 1 -z\mathbbm{1}_{|z|<1}) \nu(dz) \right) dt \\ \nonumber676&+ \sigma dW_t \; + \int_{\R} (e^{z} - 1) \tilde N(dt,dz). \nonumber677\end{align}678and define the new parameter679\begin{equation}\label{mu2}680\mu := r + b + \frac{1}{2}\sigma^2 + \int_{\R} ( e^{z} - 1 -z1_{|z|<1}) \nu(dz)681\end{equation}682Using the condition (\ref{martingale_b}) we obtain the fundamental relation683\begin{equation}\label{mu=r}684\mu = r.685\end{equation}686The risk neutral dynamics of (\ref{ELM2}) is described by the SDE:687\begin{equation}\label{RN_sde}688d S_t = \; r S_{t^-} dt + \sigma S_{t^-} dW_t \; + \int_{\R} S_{t^-} (e^{z} - 1) \tilde N(dt,dz).689\end{equation}690691\noindent692\textbf{Log variable:}\\693In order to obtain a simpler PIDE expression, it turns out that it is better to work with a Lévy process instead of its exponential.694So let us invert Eq. (\ref{ELM2})695and consider $ L_t = \log \left( \frac{S_t}{S_0} \right)$.696This is a Lévy process with finite moment of type (\ref{Levy_Ito2}).697The dynamics is described by the SDE:698\begin{equation}\label{SDE_log_var}699dL_t = \biggl( r + b + \int_{|z|\geq 1}z \nu(dz) \biggr) dt \; + \sigma dW_t + \int_{\R} z \tilde N(dt,dz).700\end{equation}701At this point, we can make the substitution (\ref{martingale_b}) for the parameter $b$:702\begin{equation}\label{SDE_log_var2}703dL_t = \biggl( r -\frac{1}{2}\sigma^2 - \int_{\R} \bigl( e^z-1-z \bigr) \nu(dz) \biggr) dt \; + \sigma dW_t + \int_{\R} z \tilde N(dt,dz).704\end{equation}705706Using the formula \ref{genLevy2}, the infinitesimal generator has the form707\begin{align}\label{RN_log_gen}708\LL^L f(x) =& \biggl( r-\frac{1}{2}\sigma^2 - \int_{\R} \bigl( e^z-1-z \bigr) \nu(dz) \biggr) \frac{\partial f(x)}{\partial x} \\ \nonumber709&+ \frac{1}{2} \sigma^2 \frac{\partial^2 f(x)}{\partial x^2}710+ \int_{\R} \biggl( f(x+z)- f(x) - z \frac{\partial f(x)}{\partial x} \biggr) \nu(dz).711\end{align}712713\noindent714\textbf{Pricing PIDE:}\\715Let us recall the pricing formula for a derivative contract:716\begin{equation}\label{derivative_price}717V(t,x) = \E^{\Q} \biggl[ D(t,T) V(T,X_T) \bigg| X_t = x \biggr] .718\end{equation}719720The derivative pricing function $V(t,x)$ with $t \in [0,T]$ and $x \in \R$, can be obtained by solving a pricing PIDE according to the following theorem.721\begin{Theorem}722Let us consider an arbitrage free market, where the underlying stock log-price follows the Lévy process (\ref{SDE_log_var2}).723Let also assume that $V(t,x) \in C^{1,2}([t_0,T] \times \R)$ and that the partial derivatives are all bounded.724Therefore $V(t,x)$ satisfies the PIDE725\begin{align}\label{derivative_PIDE}726& \frac{\partial V(t,x)}{\partial t} + \LL V(t,x) -r V(t,x) = 0 \\727& V(T,x) = \Phi(x),728\end{align}729where $\LL$ is the infinitesimal generator in (\ref{RN_log_gen}).730\end{Theorem}731I want to present the proof of this theorem because it is not presented in popular textbooks.732Since it involves advanced mathematical concepts, the reader can skip it, if not interested.733\begin{proof}734Let us consider the formula (\ref{derivative_price}).735For any stopping time $\tau$ such that $0 \leq t \leq \tau \leq T$, we can use the law of iterated expectations:736\begin{align*}737D(0,t) V(t,x) &= \E^{\Q} \biggl[ \E^{\Q} \bigl[ D(0,T) V(T,X_T) \big| X_{\tau} \bigr] \bigg| X_t=x \biggr] \\738&= \E^{\Q} \bigl[ D(0,\tau) V(\tau,X_{\tau}) \big| X_t=x \bigr].739\end{align*}740We can write $D(0,\tau) V(\tau,X_{\tau}) = D(0,t) V(t,x) + \int_t^{\tau} d\bigl(D(t,u) V(u,X_u)\bigr) du$.741Using the It\=o formula (\ref{Ito_form}), we get:742\begin{align}\label{proof_Cont_V}7430 =& \; \E^{\Q} \biggl[ \int_t^{\tau} e^{-r(u-t)} \biggl( \frac{\partial V(u,X_{u^-})}{\partial u} + \LL V(u,X_{u^-}) -r V(u,X_{u^-}) \biggr) du \bigg| X_t=x \biggr] \\ \label{term1}744& + \E^{\Q} \biggl[ \int_t^{\tau} e^{-r(u-t)} \frac{\partial V(u,X_{u^-})}{\partial x} \sigma \; dW_u \; \bigg| X_t=x \biggr] \\ \label{term2}745& + \E^{\Q} \biggl[ \int_t^{\tau} e^{-r(u-t)} \int_{\R} \bigl( V(u,X_{u^-} + z) - V(u,X_{u^-}) \bigr) \tilde N(du,dz) \; \bigg| X_t=x \biggr]746\end{align}747where we introduced the explicit expression of the discount factor (\ref{discount_factor}) with constant $r$.748The terms inside the expectations in the second and third lines are well defined if they are square integrable martingales\footnote{A martingale $\{M_t\}_{t\geq0}$ is square749integrable if $\E[M_t^2] < \infty$ for every $t$.}. Now we verify that they are well defined by using the well known \emph{It\=o isometry}750(for more information see Chapter 8 of \cite{Cont}).751Let us look at the integrability condition for the term (\ref{term1}).752\begin{align*}753& \E^{\Q} \biggl[ \int_t^{\tau} \big| e^{-r(u-t)} \frac{\partial V(u,X_{u^-})}{\partial x} \sigma \big|^2 du \; \bigg| X_t=x \biggr] \\754& \leq \sigma^2 C^2\, \E^{\Q} \biggl[ \int_t^{\tau} \big| e^{-r(u-t)} \big|^2 du \; \bigg| X_t=x \biggr] < \infty755\end{align*}756where we used the fact that the derivative is bounded by a constant $C$.\\757Let us look at the integrability condition for the term (\ref{term2}).758\begin{align*}759& \E^{\Q} \biggl[ \int_t^{\tau} \int_{\R} \bigg| e^{-r(u-t)} \bigl( V(u,X_{u^-} + z) - V(u,X_{u^-}) \bigr) \bigg|^2 \nu(dz) dt \; \bigg| X_t=x \biggr] \\760& \leq \E^{\Q} \biggl[ \int_t^{\tau} \int_{\R} \bigg| e^{-r(u-t)} C z \bigg|^2 \nu(dz) dt \; \bigg| X_t=x \biggr] \\761& \leq C^2 \int_{\R} z^2 \nu(dz) \; \int_t^{T} \bigg| e^{-r(u-t)} \bigg|^2 dt < \infty.762\end{align*}763In the second line we used the Lipschitz property of $V(t,x)$\footnote{A $C^1(\R)$ function $f$ with bounded derivative is Lipschitz. This can be easily proved.\\764Let $a,b \in \R$ with $a<b$, by the mean value theorem there exists $c\in [a,b]$ such that $f(b)-f(a) = f'(c) (b-a)$. Using $|f'(c)|\leq C$, we obtain the Lipschitz condition765$$ f(b)-f(a) \leq C (b-a). $$}.766In the third line, the integral $\int_{\R} z^2 \nu(dz)$ is finite thanks to (\ref{Levy_m}) and the finite second moment assumption (see Section \ref{LevyIto_sec}).\\767We just verified that these terms are square integrable martingales. It follows that their expectation is zero! \\768769Now let us consider (\ref{proof_Cont_V}).770By definition, the terms inside the integral are all continuous and are all bounded by some linear function.771We can divide both sides by $(\tau-t)$ and take the limit for $\tau \to t$. Using the mean value theorem, there exists $u \in [t,\tau]$ such that772$$ \lim_{u \to t} \E^{\Q} \biggl[ e^{-r(u-t)} \biggl( \frac{\partial V(u,X_u)}{\partial u} + \LL V(u,X_u) -r V(u,X_u) \biggr) \bigg| X_t=x \biggr] = 0. $$773When $\tau\to t$ also $u\to t$. Thanks to the dominated convergence theorem we can take the limit inside the expectation and conclude the proof.774\end{proof}775In practice, the hypothesis of the theorem above are rarely satisfied.776The payoff $\Phi$ is usually not in the domain of $\LL$ and sometimes is not even differentiable, e.g. call/put options.777For this reasons, the option price should be considered a solution of (\ref{derivative_PIDE}) in a weaker sense.778The notion of \emph{viscosity solution} allows to cover this case.779For a complete exposition on this topic, we refer to \cite{CoVo05}, where the authors prove that in a general setting,780option prices in exponential Lévy models correspond to viscosity solutions of the pricing PIDE.\\781782\noindent783The \textbf{pricing PIDE} is:784\begin{align}\label{PIDE_log}785& \frac{\partial V(t,x)}{\partial t} - r V(t,x)786+ \biggl( r -\frac{1}{2}\sigma^2 - \int_{\R} \bigl( e^z-1-z \bigr) \nu(dz) \biggr) \frac{\partial V(t,x)}{\partial x} \\ \nonumber787&+ \frac{1}{2} \sigma^2 \frac{\partial^2 V(t,x)}{\partial x^2}788+ \int_{\R} \bigl( V(t,x+z)- V(t,x) - z \frac{\partial V(t,x)}{\partial x} \bigr) \nu(dz) = 0.789\end{align}790With boundary conditions:\\791CALL:792\begin{itemize}793\item Terminal:794$$ V(T,x) = \max(e^x-K,0), $$795\item Lateral:796$$ V(t, x) \underset{x \to -\infty}{=} 0 \quad \mbox{and} \quad V(t, x) \underset{x \to \infty}{\sim} e^x - Ke^{-r(T-t)}. $$797\end{itemize}798PUT:799\begin{itemize}800\item Terminal:801$$ V(T,x) = \max(K-e^x,0), $$802\item Lateral:803$$ V(t, x) \underset{x \to -\infty}{\sim} = Ke^{-r(T-t)} \quad \mbox{and} \quad V(t, x) \underset{x \to \infty}{=} 0. $$804\end{itemize}805806807\section{PIDEs}808809\subsection{Black-Scholes PDE}810The \cite{BS73} model assumes a geometric Brownian motion for the dynamics of the underlying.811Let us consider a Lévy process $\{X_t\}_{t\geq 0}$ with triplet $(b,\sigma,0)$.812Using these values of the triplet, the pricing PDE (\ref{PIDE_log}) is813\begin{equation}\label{BS_PDE}814\frac{\partial V(t,x)}{\partial t}815+ \biggl( r -\frac{1}{2}\sigma^2 \biggr) \frac{\partial V(t,x)}{\partial x}816+ \frac{1}{2} \sigma^2 \frac{\partial^2 V(t,x)}{\partial x^2} - r V(t,x) = 0.817\end{equation}818This is the Black-Scholes PDE in log-variables.819The Lévy measure is identically null and therefore there is no integral term.820821822\subsection{Merton PIDE}823824I presented the Merton model in section \ref{Merton_section}.\\825Let us recall that the jump component of the Merton process has finite activity, $\nu(\R) = \lambda < \infty$.826The pricing PIDE (\ref{PIDE_log}) becomes:827\begin{align}\label{Merton_PIDE}828& \frac{\partial V(t,x)}{\partial t} - r V(t,x)829+ \biggl( r -\frac{1}{2}\sigma^2 -m \biggr) \frac{\partial V(t,x)}{\partial x} \\ \nonumber830&+ \frac{1}{2} \sigma^2 \frac{\partial^2 V(t,x)}{\partial x^2}831+ \int_{\R} V(t,x+z) \nu(dz) - \lambda V(t,x) = 0.832\end{align}833with $m$ defined as834\begin{align}\label{parameter_m}835m :=& \; \int_{\R} ( e^{x} - 1 ) \nu(dx) \\836=& \; \lambda \bigl( \phi_X(-i) - 1 \bigr) \\837=& \; \lambda \biggl( e^{\alpha + \frac{1}{2} \xi^2} -1 \biggr).838\end{align}839where $X \sim \mathcal{N}(\alpha, \xi^2)$.840Recall that the Lévy measure (\ref{Merton_measure}) is a scaled normal distribution.\\841The previous equation (\ref{Merton_PIDE}) is called \textbf{Merton PIDE}, in log-variables.842843844\subsection{Variance Gamma PIDE}845846847We introduced the Variance Gamma process in Section \ref{VG_section}. \\848The VG process has infinite activity i.e.849$\nu(\R) = \infty$ and has the triplet presented in (\ref{VG_triplet}),850with $\nu$ in eq. (\ref{VG_measure}).851852From the general PIDE pricing formula (\ref{PIDE_log}), we obtain the \textbf{VG PIDE}:853\begin{equation} \label{VG_PIDE}854\frac{\partial V(t,x)}{\partial t} + (r-w) \frac{\partial V(t,x)}{\partial x}855+ \int_{\R} \bigl[ V(t,x+z) - V(t,x) \bigr] \nu(dz) = rV(t,x) .856\end{equation}857with $w$ defined as:858\begin{equation}\label{parameter_w}859w := \int_{\R} (e^x-1) \nu(dx) = - \frac{1}{\kappa} \log \left( 1-\theta \kappa -\frac{1}{2}\bar\sigma^2 \kappa \right).860\end{equation}861Here it is not possible to separate the integrands because the process has infinite activity, and they are both infinite.\\862However, since the VG process has finite variation, this integral is finite because $e^x-1 = x + \mathcal{O}(x^2)$.863864865In order to calculate the integral, we use the following relation between the Lévy measure and the transition probability\footnote{With our notation we indicate the866probability that the process starting from $0$ at time $0$, is inside the interval $dx$ at time $t$.}867$p_{0,t}(0,dx)$ of the process:868\begin{equation}869\nu(dx) = \lim_{t\to 0} \frac{1}{t} p_{0,t}(0,dx).870\end{equation}871This relation is presented by \cite{Cont} in Chapter 3.6, and a proof can be found in Corollary 8.9 of \cite{Sato}. \\872Let us compute the expected value of the exponential VG process873\begin{align*}874\E[ e^{X_t}] &= \phi_{X_t}(-i) = \exp \biggl( -\frac{t}{\kappa} \log(1-\theta \kappa -\frac{1}{2}\bar\sigma^2 \kappa ) \biggr)\\875&= e^{w t}876\end{align*}877where we called $w = - \frac{1}{\kappa} \log(1-\theta \kappa -\frac{1}{2}\bar\sigma^2 \kappa)$.878The integral becomes879\begin{align*}880\int_{\R} (e^x-1) \nu(dx) &= \int_{\R} (e^x-1) \lim_{t\to 0} \frac{1}{t} p_{0,t}(0,dx) \\881&= \lim_{t\to 0} \frac{1}{t} \E[ e^{X_t} - 1 ] \\882&= \lim_{t\to 0} \frac{1}{t} \biggl( e^{w t} - 1 \biggr) \\883&= w.884\end{align*}885We can always take the limit outside the integral, because the integral is finite.886887888\subsubsection{Brownian approximation}889890Unfortunately, it is not straightforward to solve equation (\ref{VG_PIDE}). The Lévy measure has a singularity in the origin,891that should be removed before any kind of discretization.892893An idea to overcome this problem, that can be applied to any Lévy processes with infinite activity, is presented in \cite{CoVo05b}.894The authors propose to approximate the process $\{L_t\}_{t\geq0}$ in (\ref{SDE_log_var2}) by an895appropriate finite activity process with a modified diffusion component.896The ``small jumps'' martingale component is approximated by a Brownian motion with same variance.897After fixing a truncation parameter $\epsilon >0$, the integrals in the SDE are split in two domains: $\{|z|<\epsilon\}$ and $\{|z|\geq \epsilon\}$.898The integrand on the domain $\{ |z|<\epsilon \}$, is approximated by the Taylor expansion899$e^z-1-z = \frac{z^2}{2} + \mathcal{O}(z^3)$ such that900\begin{align}\label{log_sde_inf_act}\nonumber901dL_t =& \biggl( r -\frac{1}{2}\sigma^2 - \int_{\R} \bigl( e^z-1-z \bigr) \nu(dz) \biggr)dt + \sigma dW + + \int_{\R} z \tilde N(dt,dz) \\ \nonumber902=& \biggl( r - \frac{1}{2}\sigma^2 -\int_{|z|<\epsilon} (e^z-1-z) \nu(dz) -\int_{|z|\geq \epsilon} (e^z-1-z) \nu(dz) \biggr) dt\\ \nonumber903&+ \sigma dW_t + \underbrace{\int_{|z|< \epsilon} z \tilde N(dt,dz)}_{\sigma_{\epsilon} dW_t} + \int_{|z| \geq \epsilon} z \tilde N(dt,dz) \\904=& \biggl( r - \frac{1}{2} (\sigma^2 + \sigma_{\epsilon}^2) - w_{\epsilon} + \lambda_{\epsilon} \theta_{\epsilon} \biggr) dt + \bigl( \sigma+\sigma_{\epsilon}\bigr) dW_t905+ \int_{|z|\geq \epsilon} z \tilde N(dt,dz) ,906\end{align}907where we defined the new parameters908\begin{align}\label{sig_eps}909& \sigma_{\epsilon}^2 := \int_{|z| < \epsilon} z^2 \nu(dz), \quad \quad w_{\epsilon} := \int_{|z| \geq \epsilon} (e^z-1) \nu(dz), \\ \nonumber910& \lambda_{\epsilon} := \int_{|z| \geq \epsilon} \nu(dz), \quad \quad \theta_{\epsilon} := \frac{1}{\lambda_{\epsilon}} \int_{|z| \geq \epsilon} z \nu(dz) .911\end{align}912The process $\int_{|z|\geq \epsilon} z \tilde N(dt,dz)$ is a compensated Poisson process with finite activity $\lambda_{\epsilon}$.913914For the VG process, where $\sigma = 0$, the approximated dynamics is thus915\begin{equation}\label{log_sde_VG}916dL_t = \biggl( r - \frac{1}{2} \sigma_{\epsilon}^2 - w_{\epsilon} + \lambda_{\epsilon} \theta_{\epsilon} \biggr) dt917+ \sigma_{\epsilon} dW_t + \int_{|z|\geq \epsilon} z \tilde N(dt,dz),918\end{equation}919or the equivalent920\begin{equation}921dL_t = \biggl( r - \frac{1}{2} \sigma_{\epsilon}^2 - w_{\epsilon} \biggr) dt922+ \sigma_{\epsilon} dW_t + \int_{|z|\geq \epsilon} z N(dt,dz),923\end{equation}924where the parameters are obtained from the Lévy measure (\ref{VG_measure}).925926The \textbf{approximated VG PIDE} is:927\begin{align}\label{VG_JD}928& \frac{\partial V(t,x)}{\partial t} +929\bigl( r-\frac{1}{2}\sigma_{\epsilon}^2 - w_{\epsilon} \bigr) \frac{\partial V(t,x)}{\partial x}930+ \frac{1}{2}\sigma_{\epsilon}^2 \frac{\partial^2 V(t,x)}{\partial x^2} \\ \nonumber931&+ \int_{|z| \geq \epsilon} V(t,x+z) \nu(dz) = (\lambda_{\epsilon} + r) V(t,x).932\end{align}933It has the same ``jump-diffusion'' form of the Merton PIDE, except for the truncation in the integral.934935936937938\bibliographystyle{apalike}939\bibliography{/home/nicola/Documenti/ISEG/Bibliografia/trans_cost.bib,/home/nicola/Documenti/ISEG/Bibliografia/book.bib,/home/nicola/Documenti/ISEG/Bibliografia/fin_math.bib,/home/nicola/Documenti/ISEG/Bibliografia/viscosity.bib,/home/nicola/Documenti/ISEG/Bibliografia/num_meth.bib,/home/nicola/Documenti/ISEG/Bibliografia/phd_thesis.bib,/home/nicola/Documenti/ISEG/Bibliografia/Levy.bib,/home/nicola/Documenti/ISEG/Bibliografia/control.bib}940941\end{document}942943944945946947948949