Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
cantaro86
GitHub Repository: cantaro86/Financial-Models-Numerical-Methods
Path: blob/master/latex/A.3 Introduction to Lévy processes and PIDEs.tex
1689 views
1
\documentclass[a4paper,10pt]{article}
2
\usepackage[utf8]{inputenc}
3
4
\usepackage {graphicx}
5
\usepackage {amsfonts}
6
\usepackage{amsmath}
7
\usepackage{hyperref}
8
\usepackage{amsthm}
9
\usepackage{mathtools}
10
\usepackage{bbm}
11
\usepackage{dsfont}
12
\usepackage{textcomp}
13
\usepackage[colorinlistoftodos]{todonotes}
14
\usepackage{algorithm,algorithmic}
15
\usepackage{booktabs}
16
17
%\usepackage{natbib}
18
19
%Options: Sonny, Lenny, Glenn, Conny, Rejne, Bjarne, Bjornstrup
20
\usepackage[Bjornstrup]{fncychap}
21
%\usepackage{blindtext}
22
\usepackage{minitoc}
23
24
25
\newcommand{\HRule}{\rule{\linewidth}{0.5mm}}
26
% \renewcommand{\abstractname}{Motivations}
27
28
\newcommand{\numberset}{\mathbb}
29
\newcommand{\N}{\numberset{N}}
30
\newcommand{\R}{\numberset{R}}
31
\newcommand{\E}{\numberset{E}}
32
\newcommand{\C}{\numberset{C}}
33
\newcommand{\PP}{\numberset{P}}
34
\newcommand{\Q}{\numberset{Q}}
35
\newcommand{\SI}{\mathcal{S}}
36
\newcommand{\LL}{\mathcal{L}}
37
\newcommand{\I}{\mathcal{I}}
38
\newcommand{\F}{\mathcal{F}}
39
\newcommand{\OO}{\mathcal{O}}
40
\newcommand{\xx}{\mathrm{x}}
41
42
43
\newtheorem{Theorem}{Theorem}[section]
44
\newtheorem{Definition}{Definition}[section]
45
\newtheorem{Corollary}{Corollary}[section]
46
\newtheorem{Remark}{Remark}
47
\newtheorem{scheme}[]{Scheme}
48
49
\newtheoremstyle{exampstyle}
50
{\topsep} % Space above
51
{\topsep} % Space below
52
{} % Body font
53
{} % Indent amount
54
{\bfseries} % Theorem head font
55
{.} % Punctuation after theorem head
56
{.5em} % Space after theorem head
57
{} % Theorem head spec (can be left empty, meaning `normal')
58
59
60
% riquadro attorno al testo
61
\newbox{\riquadrobox}
62
\newenvironment{riquadro}[1]
63
{\setlength{\dimen255}{\parindent}%
64
\begin{lrbox}{\riquadrobox}\begin{minipage}{#1}
65
\setlength{\parindent}{\dimen255}}
66
{\end{minipage}\end{lrbox}\fbox{\usebox{\riquadrobox}}}
67
68
%%%%%%%%% A different title
69
%\usepackage{titlesec, blindtext, color}
70
%\definecolor{gray75}{gray}{0.75}
71
%\newcommand{\hsp}{\hspace{20pt}}
72
%\titleformat{\chapter}[hang]{\Huge\bfseries}{\thechapter\hsp\textcolor{gray75}{|}\hsp}{0pt}{\Huge\bfseries}
73
74
\makeatletter
75
%\newcommand{\ALOOP}[1]{\ALC@it\algorithmicloop\ #1%
76
% \begin{ALC@loop}}
77
%\newcommand{\ENDALOOP}{\end{ALC@loop}\ALC@it\algorithmicendloop}
78
\renewcommand{\algorithmicrequire}{\textbf{Input:}}
79
\renewcommand{\algorithmicensure}{\textbf{Output:}}
80
\newcommand{\algorithmicbreak}{\textbf{break}}
81
\newcommand{\BREAK}{\STATE \algorithmicbreak}
82
83
\title{\textsc{An introduction to Lévy processes and PIDEs}\\ \small with applications to Merton and Variance Gamma processes}
84
85
\author{ Nicola Cantarutti }
86
87
88
\begin{document}
89
90
\maketitle
91
92
\begin{abstract}
93
In this brief introduction I have tried to summarize all the most important concepts regarding Lévy's processes.
94
The goal is to introduce the formalism and the tools necessary to derive the partial integro-differential equation (PIDE)
95
for pricing financial derivatives, when the underlying stock price is modeled by the exponential of a Lévy process.
96
These arguments are not simple and the reader is required to have a good knowledge of the basics of stochastic calculus and financial mathematics.
97
However, a complete list of references and tutorials for beginners will be presented.\\
98
At the end of the tutorial I will make a thorough presentation of the cases of the Merton and Variance Gamma process. I will also present the Black-Scholes PDE, which is a
99
special case when the Lévy process under consideration is the Brownian motion.
100
\end{abstract}
101
102
103
104
\tableofcontents
105
106
\newpage
107
108
Over the past thirty years, a lot of research has been done on processes with jumps and their applications to financial derivatives.
109
Let us start with the list of references.
110
111
\noindent
112
A good tutorial for beginners is \cite{papapa}. I really suggest to read this tutorial because it is very clear, compact, and gives a good overview of the theory and applications
113
of Lévy processes. The article can be found on the Arxiv web page: \url{https://arxiv.org/abs/0804.0482}.
114
115
If you are looking for some more challenging references I suggest
116
\cite{Sato}, which is a reference book for the theory of Lévy processes, and
117
\cite{Applebaum} that gives more emphasis on stochastic calculus and stochastic differential equations (SDEs). These two books are very rigorous mathematical books.
118
119
Comprehensive guides on applications of Lévy processes in finance are the books of
120
\cite{Cont} and \cite{Schoutens}. These books are also accessible to beginners.
121
122
Among the most popular Lévy processes applied to finance, it is worth to mention:
123
\begin{itemize}
124
\item[-] the Merton jump-diffusion model \cite{Me76}
125
\item[-] the Kou jump-diffusion model \cite{Kou02}
126
\item[-] the $\alpha$-stable \cite{Ma63}, \cite{BoPoCo97}, \cite{alpha09}
127
\item[-] the Variance-Gamma (VG) \cite{MaSe90}, \cite{MCC98}
128
\item[-] the Normal-Inverse-Gaussian (NIG) \cite{BN97}
129
\item[-] hyperbolic Lévy processes \cite{EbKe95}
130
\item[-] Carr-Geman-Madan-Yor (CGMY) model \cite{CGMY02}
131
\end{itemize}
132
133
We begin with the most important definitions concerning the theory of Lévy processes and the stochastic calculus applied to jump processes.
134
135
These definitions are very quite abstract. I encourage the reader to have a look at \cite{papapa} for more practical examples, or to read
136
the first three chapters of \cite{Cont}. Sometimes it is enough to have a look at wikipedia, in order to clarify the ideas.
137
Here, I prefer to give a very short presentation of the main concepts, and dedicate more space to the second part of the tutorial.
138
139
In the second part we focus on the derivation of the PIDE for option pricing and on the exponential Lévy models used in this tutorial:
140
the \emph{Merton} and \emph{Variance Gamma} models.
141
In this part of the tutorial, I will present all the calculation step by step.
142
143
144
145
\section{Basic definitions}
146
147
Let $\{X_t\}_{t \ge 0}$ be a stochastic process defined on a probability space $(\Omega,\mathcal{F},\{\mathcal{F}_t\}_{t \ge 0}),\PP)$,
148
where $\mathcal{F}_t$ is the filtration to which the process $\{X_t\}_{t \ge 0}$ is adapted and represents the accumulated ``information'' up to time $t$.\\
149
\begin{Definition}\label{LevyDef}
150
We say that $\{X_t\}_{t \ge 0}$ is a \textbf{Lévy Process} if:
151
\begin{itemize}
152
\item[(\textbf{L1})] $X_{t=0} = 0$.
153
\item[(\textbf{L2})] $\{X_t\}_{t \ge 0}$ has independent increments i.e. $X_t - X_s$ is independent of $\mathcal{F}_s$ for any $0 \leq s < t$.
154
\item[(\textbf{L3})] $\{X_t\}_{t \ge 0}$ has stationary increments i.e. for any $s,t \geq 0$, the distribution of $X_{t+s} - X_t$ does not depend on $t$.
155
\item[(\textbf{L4})] $\{X_t\}_{t \ge 0}$ is stochastically continuous i.e. for every $\epsilon > 0 $ and $t \ge 0$ $$\lim_{h\to 0} \PP(|X_{t+h}-X_t| > \epsilon)=0. $$
156
\end{itemize}
157
\end{Definition}
158
It can be proven that Lévy processes have ``cádlág''
159
paths, i.e. paths which are right-continuous and have left limits.
160
161
%Lévy processes are intrinsically connected with infinitely divisible distributions. In particular the Lévy-Khintchine formula
162
%for infinitely divisible random variables, is an essential tool for the classification of the Lévy processes by the form of their
163
%characteristic functions.
164
165
\begin{Definition} \label{chf}
166
Let $X: \Omega \to \R$ be a random variable.\\
167
The \textbf{Characteristic function} $\phi_X:\R \to \C$ of $X$, is defined by
168
\begin{align}
169
\phi_{X}(u) &= \E [e^{iuX}] \nonumber \\
170
&= \int_{\Omega} e^{iuX} \PP(d\omega) \nonumber \\
171
&= \int_{\R} e^{iux} f_X dx.
172
\end{align}
173
for each $u \in \R$. Where $\omega \in \Omega$, and we indicated with $f_X = \frac{d\PP}{dx}$ the \textbf{probability density function} (pdf) of $X$.
174
\end{Definition}
175
For each $n \in \N$ , if $\E\bigl[ |X^{n}| \bigr] < \infty$, then
176
\begin{equation}\label{moments}
177
\E\bigl[ X^{n} \bigr] = i^{-n}\frac{\partial^n}{\partial u^{n}} \phi_X(u) \biggr|_{u=0} .
178
\end{equation}
179
With this property it is straightforward to compute the moments of all orders, as long as we know the analytic form
180
of the characteristic function.
181
182
\subsection{Lévy-Khintchine representation}
183
184
We now present a beautiful formula, first established by Paul Lévy and A.Ya. Khintchine in the 1930s
185
which gives a characterization of every infinitely divisible random variable.\\
186
187
\begin{Definition} \label{Levy_measure}
188
Let $\nu(dx)$ be a measure on $\R$. We say it is a \textbf{Lévy measure} if it satisfies
189
\begin{equation}
190
\nu (\{ 0 \} ) = 0,
191
\end{equation}
192
\begin{equation} \label{Levy_m}
193
\int_{\R} \min\{1, x^2\} \nu(dx) < \infty.
194
\end{equation}
195
\end{Definition}
196
The characteristic function of a Lévy processes at a fixed time $t\geq 0$ has the following \textbf{Lévy Khintchine representation}:
197
\begin{Theorem}
198
Let $X_t$ be the random value of a Lévy process at time $t\geq0$. Then there exist $b\in R$, $\sigma>0$
199
and a Lévy measure $\nu$ on $\R$, such that $\forall u \in \R$:
200
\begin{align}
201
\phi_{X_t}(u) &= \mathbb{E} [e^{iuX_t}] \\
202
&= e^{t \eta(u)} \nonumber \\
203
&= \exp \left[ t \left( ibu - \frac{1}{2} \sigma^2 u^2 + \int_{\R}
204
( e^{iux} -1 -iux \mathbbm{1}_{(|x|<1)}(x) ) \nu(dx) \right) \right]. \nonumber
205
\end{align}
206
\end{Theorem}
207
A proof can be found in \cite{Applebaum} (Theorem 1.2.14).\\
208
209
\begin{itemize}
210
\item We call the map $\eta : \R \to \C$, the \textbf{Lévy symbol}.
211
\item The triplet $(b, \sigma, \nu)$ is called \textbf{Lévy triplet}, and completely characterizes the Lévy process.
212
\end{itemize}
213
214
215
216
217
218
\subsection{Random measures}\label{random_measures}
219
220
A convenient tool for analyzing the jumps of a Lévy process is the random
221
measure of the jumps of the process.
222
The jump process $\{\Delta X_t\}_{t \ge 0}$ associated to the Lévy process $\{X_t\}_{t \ge 0}$ is
223
defined, for each $t \geq 0$ , by
224
\begin{equation}\label{jump}
225
\Delta X_t = X_t - X_{t^-}
226
\end{equation}
227
where $X_{t^-} = \lim_{s\uparrow t} X_s $.\\
228
\begin{Definition}
229
Consider an open set $A \subseteq \R \backslash \{ 0 \})$.
230
We define the \textbf{random measure} of the jumps of the process $\{X_t\}_{t \ge 0}$ by
231
\begin{align}
232
N^X(t,A)(\omega) &= \# \{ s \in [0,t] \, : \; \Delta X_s(\omega) \in A \} \\
233
&= \sum_{0 \leq s \leq t} \mathbbm{1}_A(\Delta X_s(\omega)) . \nonumber
234
\end{align}
235
\end{Definition}
236
\noindent
237
For each $\omega \in \Omega$ and for each $0 \leq t < \infty$, the map
238
$$ A \to N^X(t,A)(w) $$
239
is a counting measure i.e. it counts the number of jumps of the process $\{X_t\}_{t\geq0}$ with size in $A$ up to time $t$.\\
240
We say that $A$ is \emph{bounded below} if $0 \not \in \bar A$ i.e. zero does not belong to the closure of $A$.
241
242
\begin{itemize}
243
\item For each $A$ bounded below, the process $\bigl \{ N^X(t,A)(\omega) \bigr \}_{t\geq 0}$ is a \textbf{Poisson process} with intensity
244
\begin{equation}\label{Expect_N}
245
\nu(A) = \mathbb{E}[N^X(1,A) ]
246
\end{equation}
247
\item If $A_1, ..., A_m$ are disjoint subsets of $\R \backslash \{ 0 \})$ and bounded below and $t_1, ..., t_m$ are distinct non-negative times, then
248
the random variables $N(t_1,A_1), ..., N(t_m,A_m)$ are independent.
249
\end{itemize}
250
A random measure satisfying the properties above is called \textbf{Poisson random measure}.\\
251
If $A$ is not bounded below, it is possible to have $\nu(A) = \infty$.
252
253
We can also define the \textbf{Compensated Poisson random measure}. For each $t \geq 0$ and $A$ bounded below, let us define:
254
\begin{equation}
255
\tilde{N}(t,A) = N(t,A) - t\nu(A).
256
\end{equation}
257
This is a martingale-valued measure, i.e. for each $A$ the process $\bigl \{ \tilde{N}(t,A) \bigr \}_{t\geq 0} $ is a martingale.
258
259
260
\noindent
261
Now we can define the integration with respect to a random measure:
262
\begin{Definition} \label{Poisson_int}
263
Let $N$ be the Poisson random measure associated to a Lévy process $\{X_t\}_{t \geq 0}$, and let $f:\R \to \R$ be a measurable
264
function. For any $A$ bounded below, we define the \textbf{Poisson integral} of $f$ as
265
\begin{equation}
266
\int_A f(x) N(t,dx) = \sum_{x\in A} f(x) N(t,\{x\}).
267
\end{equation}
268
\end{Definition}
269
\noindent
270
Since $N(t,\{x\}) \neq 0 \Leftrightarrow \Delta X_s=x$ for at least one $s\in [0,t]$, we have
271
\begin{equation}
272
\int_A f(x) N(t,dx) = \sum_{0 \leq s \leq t} f(\Delta X_s) \mathbbm{1}_A(\Delta X_s).
273
\end{equation}
274
We can also define in the same way the \textbf{compensated Poisson integral}
275
\begin{equation}
276
\int_A f(x) \tilde{N}(t,dx) := \int_A f(x) N(t,dx) - t \int_A f(x) \mu(dx),
277
\end{equation}
278
We can further define:
279
\begin{equation}
280
\int_{|x|<1} f(x) \tilde N(t,dx) := \lim_{\epsilon \to 0} \int_{\epsilon < |x| < 1} f(x) \tilde N(t,dx),
281
\end{equation}
282
that represents the compensated sum of small jumps.
283
284
285
\subsection{Lévy-It\={o} decomposition} \label{LevyIto_sec}
286
287
The following is a fundamental theorem which decomposes a general Lévy process in a superposition
288
of independent processes: a drift term, a Brownian motion, a Poisson process with ``big jumps'' and a compensated Poisson process with ``small jumps''.
289
290
\begin{Theorem}
291
Given a Lévy process $\{X_t\}_{t \ge 0}$ , there exist $b\in \R$, a Brownian motion $W$ with variance $\sigma^2$, and an
292
independent Poisson random measure $N$ on $[0,\infty) \times \R$ such that
293
\begin{equation}\label{Levy_Ito}
294
X_t = bt + \sigma W_t + \int_{|x|<1} x \tilde{N}(t,dx) + \int_{|x|\geq1} x N(t,dx).
295
\end{equation}
296
This is called \textbf{Lévy-It\={o} decomposition}.
297
\end{Theorem}
298
For a proof the reader can look at Theorem 2.4.16 in \cite{Applebaum}.\\
299
A lot of information on the features of a Lévy process can be derived from the integrability conditions of its Lévy measure.\\
300
Let $\{X_t\}_{t\geq0}$ be a Lévy process with Lévy measure $\nu$. Then
301
\begin{enumerate}
302
\item For all $t\geq0$, $X_t$ has finite p-moment i.e.
303
$\E[|X_t|^p]<\infty$ for $p\geq0$ if and only if $\int_{|x| \geq 1} |x|^p \nu(dx) <\infty$.
304
\item For all $t\geq0$, $X_t$ has finite exponential p-moment i.e. $\E[\exp(pX_t)]<\infty$ for $p\in \R$ if and only if
305
$\int_{|x| \geq 1} e^{xp} \nu(dx) <\infty$.
306
\end{enumerate}
307
308
The majority of Lévy processes used in finance have finite moments.
309
For practical reasons, it makes sense to assume finite mean and variance of the price process.
310
In this tutorial we will model the 1-dimensional dynamics of the prices with the exponential of a Lévy process,
311
i.e. $S_t = S_0 e^{X_t}$. Let us introduce the important assumption:
312
\begin{center}
313
\begin{riquadro}{12cm}
314
\textbf{Assumption}:\\
315
We consider only Lévy processes with finite exponential second moment.\\
316
Therefore it follows that:
317
\begin{equation}\label{AssumptionEM}
318
\E\bigl[ S_t^2 \bigr] < \infty \quad \Leftrightarrow \quad \int_{|x| \geq 1} e^{2x} \nu(dx) <\infty
319
\end{equation}
320
\end{riquadro}
321
\end{center}
322
323
The existence of the exponential 2-moment implies that $\{X_t\}_{t \geq 0}$ has finite p-moment for all $p \in \N$.
324
325
326
If we assume that $\{X_t\}_{t \geq 0}$ has finite first moment, we can simplify the Lévy-It\={o} decomposition,
327
by adding and subtracting the finite term $\int_{|x| \geq 1} x t\, \nu(dx)$
328
in (\ref{Levy_Ito}).
329
The decomposition has now the form:
330
\begin{equation}\label{Levy_Ito2}
331
X_t = \biggl( b+\int_{|x| \geq 1} x \nu(dx) \biggr)t + \sigma W_t + \int_{\R} x \tilde{N}(t,dx).
332
\end{equation}
333
334
335
Let us recall the definition of the \emph{total variation} $TV(f)$ of a function $f : [a,b] \to \R$
336
\begin{equation}
337
TV(f) = \sup_P \sum_{i=1}^n |f(t_i) - f(t_{i-1})|,
338
\end{equation}
339
where the supremum is taken over all $P$, the finite partitions $a=t_0 < t_1 < ... < t_n = b$ of the interval $[a,b]$.
340
A Lévy process is said to be of finite variation if its paths are of finite variation with probability 1.
341
342
The variation of any Lévy processes is related with the behavior of the Lévy measure in the region $|x|<1$.\\
343
A Lévy process $\{X_t\}_{t \geq 0}$ with triplet $(b,\sigma,\nu)$ is of \textbf{finite variation} if and only if
344
\begin{equation}
345
\sigma = 0 \quad \mbox{ and } \quad \int_{|x| < 1} |x| \nu(dx).
346
\end{equation}
347
\noindent
348
If we assume that $\{X_t\}_{t \geq 0}$ has finite variation, the Lévy-It\={o} decomposition (\ref{Levy_Ito})
349
becomes
350
\begin{equation}\label{Levy_Ito3}
351
X_t = \biggl( b-\int_{|x| < 1} x \nu(dx) \biggr)t + \int_{\R} x N(t,dx).
352
\end{equation}
353
354
355
\subsection{The It\={o} formula and infinitesimal generator}
356
357
Let us express the Lévy It\=o decomposition in the differential form:
358
\begin{equation}\label{Levy_Ito22}
359
dX_t = b\,dt + \sigma \, dW_t + \int_{|z|<1} z \tilde{N}(dt,dz) + \int_{|z|\geq1} z N(dt,dz).
360
\end{equation}
361
362
Now we can introduce the most important formula in stochastic calculus: the \textbf{It\={o}'s formula}.
363
\begin{Theorem}
364
If $X_t$ is the Lévy process with dynamics as in (\ref{Levy_Ito22}), for each $f \in C^2(\R^n)$ we have
365
\begin{align} \label{Ito_form}
366
df(X_t) &= \frac{\partial f}{\partial x}(X_{t^-}) b dt + \frac{\partial f}{\partial x}(X_{t^-}) \sigma dW_t
367
+ \frac{1}{2} \frac{\partial^2 f}{\partial x^2}(X_{t^-}) \sigma^2 dt \\ \nonumber
368
&+ \int_{|z|\geq 1} \bigl[ f\bigl( X_{t^-} + z \bigr) - f( X_{t^-} ) \bigr] N(dt,dz) \\ \nonumber
369
&+ \int_{|z|< 1} \bigl[ f\bigl( X_{t^-} + z \bigr) - f(X_{t^-}) \bigr] \tilde N(dt,dz) \\ \nonumber
370
&+ \int_{|z|< 1} \bigl[ f\bigl( X_{t^-} + z \bigr) - f(X_{t^-}) - \frac{\partial f}{\partial x}(X_{t^-}) z \bigr] \nu(dz)dt. \nonumber
371
\end{align}
372
\end{Theorem}
373
The terms in the first line are the same of the well known diffusion case. The other terms comes from the discontinuous part of the process.\\
374
375
\noindent
376
A Lévy process is a \textbf{Markov process}.
377
To be precise, a Lévy process is a \textbf{time homogeneous}, \textbf{translation invariant} Markov process. For more information on these topics, have a look at \cite{Applebaum}.\\
378
379
We can define the \textbf{infinitesimal generator} $\LL^X : f \to \LL^X f$ of the Lévy process $X$ with triplet $(b,\sigma,\nu)$:
380
\begin{align}\label{genLevy}
381
(\LL^X f)(x) =& \; \lim_{t\to0} \frac{\E \bigl[ f(x + X_t) \bigr] - f(x) }{t} \\
382
=& \; b \frac{\partial f}{\partial x}(x) +
383
\frac{1}{2} \sigma^2 \frac{\partial^2 f}{\partial x^2}(x)\\
384
& + \int_{\R} \left( f(x+z) - f(x) - z \frac{\partial f}{\partial x}(x)
385
\mathbbm{1}_{\{ |z|<1 \}}(z) \right) \nu(dz). \nonumber
386
\end{align}
387
This works for functions twice continuously differentiable, and with nice behavior at infinity (usually they are required to have compact support, or to vanish at infinity or even
388
polynomial growth).
389
390
If the Lévy process $\{X_t\}_{t \geq 0}$ has finite first moment i.e. with Lévy-It\=o decomposition (\ref{Levy_Ito2}), the generator has form:
391
\begin{align}\label{genLevy2}
392
(\LL^X f)(x) =& \; b \frac{\partial f}{\partial x}(x) +
393
\frac{1}{2} \sigma^2 \frac{\partial^2 f}{\partial x^2}(x)\\ \nonumber
394
& + \int_{\R} \left( f(x+z) - f(x) - z \frac{\partial f}{\partial x}(x) \right) \nu(dz).
395
\end{align}
396
397
398
399
\section{Exponential Lévy models}\label{Section_ELM}
400
401
402
If we indicate with $S_t$ the stock price,
403
the name \textbf{exponential Lévy model} comes from the expression:
404
\begin{equation}\label{ELM}
405
S_t = S_0 e^{X_t} ,
406
\end{equation}
407
where $X_t$ is a one dimensional Lévy process with triplet $(b,\sigma,\nu)$.
408
409
410
\subsection{Exponential Lévy SDE}
411
412
In order to obtain an SDE for $S_t$ in (\ref{ELM}), we apply the It\={o} formula (\ref{Ito_form}), and consider
413
the dynamics (\ref{Levy_Ito22}) for $X_t$:
414
\begin{align*}
415
d S_t \; &= S_0 e^{X_{t^-}} b dt \; + \; S_0 e^{X_{t^-}} \sigma dW_t \; + \; \frac{1}{2}S_0 e^{X_{t^-}}\sigma^2 dt \\ \nonumber
416
&+ \int_{|x|\geq 1} (S_0 e^{X_{t^-}+x} - S_0 e^{X_{t^-}}) N(dt,dx) \\ \nonumber
417
&+ \int_{|x|< 1} (S_0 e^{X_{t^-}+x} - S_0 e^{X_{t^-}}) \tilde N(dt,dx) \\ \nonumber
418
&+ \int_{|x|< 1} (S_0 e^{X_{t^-}+x} - S_0 e^{X_{t^-}} - x S_0 e^{X_{t^-}}) \nu(dx) dt. \nonumber
419
\end{align*}
420
After some substitutions we get:
421
\begin{align}
422
\frac{d S_t}{S_{t^-}} \; &= (b + \frac{1}{2}\sigma^2 ) dt + \sigma dW_t \\ \nonumber
423
&+ \int_{|x|< 1} ( e^{x} - x - 1) \nu(dx) dt \\ \nonumber
424
&+ \int_{|x|\geq 1} (e^{x} - 1) N(dt,dx) + \int_{|x|< 1} (e^{x} - 1) \tilde N(dt,dx). \nonumber
425
\end{align}
426
Thanks to the assumption (\ref{AssumptionEM}) we can simplify this equation.
427
First we look at the integrability conditions:
428
\begin{itemize}
429
\item $\int_{|x|\geq 1} e^{x} \nu(dx) < \infty$ by (\ref{AssumptionEM}).
430
\item $\int_{|x|\geq 1} 1\; \nu(dx) < \infty$ by definition (\ref{Levy_measure}) of $\nu$.
431
\end{itemize}
432
We can add and subtract $\pm \int_{|x|\geq 1} ( e^{x} - 1) \nu(dx) dt $ and obtain the final form
433
\begin{align} \label{exp_sde}
434
\frac{d S_t}{S_{t^-}} \; &= \left(b + \frac{1}{2}\sigma^2 + \int_{\R} ( e^{x} - 1 -x\mathbbm{1}_{|x|<1}) \nu(dx) \right) dt \\ \nonumber
435
&+ \sigma dW_t \; + \int_{\R} (e^{x} - 1) \tilde N(dt,dx). \nonumber
436
\end{align}
437
If we set
438
\begin{equation}\label{mu}
439
\mu := b + \frac{1}{2}\sigma^2 + \int_{\R} ( e^{x} - 1 -x\mathbbm{1}_{|x|<1}) \nu(dx)
440
\end{equation}
441
The SDE for $S_t$ becomes:
442
\begin{equation}\label{exp_sde2}
443
d S_t = \; \mu S_{t^-} dt + \sigma S_{t^-} dW_t \; + \int_{\R} S_{t^-} (e^{x} - 1) \tilde N(dt,dx).
444
\end{equation}
445
The same equation can be derived quickly by considering the Lévy-It\={o} form (\ref{Levy_Ito2}) for $X_t$:
446
\begin{align*}
447
d S_t \; =& \; S_0 e^{X_{t^-}} \biggl( b + \int_{|x|\geq 1}x \nu(dx) \biggr) dt \; + \; S_0 e^{X_{t^-}} \sigma dW_t \; + \; \frac{1}{2}S_0 e^{X_{t^-}}\sigma^2 dt \\ \nonumber
448
&+ \int_{\R} (S_0 e^{X_{t^-}+x} - S_0 e^{X_{t^-}}) \tilde N(dt,dx) + \int_{\R} (S_0 e^{X_{t^-}+x} - S_0 e^{X_{t^-}} - x S_0 e^{X_{t^-}}) \nu(dx) dt \\ \nonumber
449
=& \; S_{t^-} \biggl[ \mu dt + \sigma dW_t \; + \int_{\R} (e^{x} - 1) \tilde N(dt,dx) \biggr].\\
450
\end{align*}
451
452
453
454
455
\subsection{The Merton Model}\label{Merton_section}
456
457
The first jump-diffusion model for the log-prices is the \emph{Merton model}, presented in
458
\cite{Me76}. In the same paper the author also obtains a closed form solution for the price of an European vanilla option.
459
The Merton model describes the log-price evolution with a Lévy process with a nonzero diffusion
460
component and a finite activity jump process with normal distributed jumps.
461
\begin{equation}\label{MertonM}
462
X_t = \bar b t + \sigma W_t + \sum_{i=1}^{N_t} Y_i,
463
\end{equation}
464
where $N_t$ is a Poisson random variable counting the jumps of $X_t$ in $[0,t]$, and $Y_i \sim \mathcal{N}(\alpha, \xi^2)$ is the size of the jumps.\\
465
Using the Poisson integral notation (Def. \ref{Poisson_int}), the process becomes
466
\begin{equation*}
467
X_t = \bar b t + \sigma W_t + \int_{\R} x N(t,dx)
468
\end{equation*}
469
The previous equation corresponds to the Lévy-It\={o} decomposition (\ref{Levy_Ito3}) with an additional Brownian motion term,
470
and with
471
$$\bar b = b - \int_{|x|<1} x \nu(dx).$$
472
The Lévy measure of a finite activity Lévy process, can be factorized in the activity $\lambda$ of the Poisson process and
473
the pdf of the jump size:
474
\begin{align}\label{Merton_measure}
475
\nu(dx) &= \lambda f_Y(dx), \\
476
&= \frac{\lambda}{\xi \sqrt{2\pi}} e^{- \frac{(x-\alpha)^2}{2\xi^2}} dx.
477
\end{align}
478
such that $\int_{\R} \nu(dx) = \lambda$.\\
479
480
Since $\int_{|x|<1} x \nu(dx)$ is finite, the jump process has \textbf{finite variation}. However,
481
the Merton process has infinite variation because $\sigma >0$.
482
483
The Lévy exponent has the following form:
484
\begin{equation}
485
\eta(u) = i\bar b u - \frac{1}{2} \sigma^2 u^2 + \lambda \biggl( e^{i\alpha u -\frac{\xi^2 u^2}{2} }-1 \biggr).
486
\end{equation}
487
\newline
488
Using the formula for the moments (\ref{moments}) we obtain:
489
\begin{align}\label{Merton_moments}
490
\E[X_t] &= t(\bar b+\lambda \alpha). \\ \nonumber
491
\mbox{Var}[X_t] &= t(\sigma^2 + \lambda \xi^2 + \lambda \alpha^2). \\ \nonumber
492
\mbox{Skew}[X_t] &= \frac{t\lambda (3\xi^2 \alpha + \alpha^3)}{\bigl(\mbox{Var}[X_t])^{3/2}}. \\ \nonumber
493
\mbox{Kurt}[X_t] &= \frac{t \lambda (3\xi^3 +6\alpha^2\xi^2 +\alpha^4)}{\bigl(\mbox{Var}[X_t]\bigr)^2}. \nonumber
494
\end{align} \newline
495
496
497
\subsection{The Variance Gamma process}\label{VG_section}
498
499
The \emph{variance gamma} process is a pure jump Lévy process with infinite activity.
500
The first presentation with applications in finance is due to \cite{MaSe90}.
501
The model presented in their paper is however a symmetric VG model,
502
where there is only an additional parameter which controls the kurtosis, while the skewness is still not considered.\\
503
The non-symmetric VG process is described in \cite{MCC98} where a closed form solution for European vanilla options is also presented.\\
504
505
If we consider a Brownian motion with drift $X_t = \theta t + \bar\sigma W_t$ and substitute the time variable with the gamma random variable
506
$T_t \sim \Gamma(t,\kappa t)$,
507
we obtain the \textbf{variance gamma} process:
508
\begin{equation}\label{VG_process}
509
X_{T_t} = \theta T_t + \bar\sigma W_{T_t} .
510
\end{equation}
511
It depends on three parameters:
512
\begin{itemize}
513
\item $\bar\sigma$, the volatility of the Brownian motion
514
\item $\kappa$, the variance of the Gamma process
515
\item $\theta$, the drift of the Brownian motion
516
\end{itemize}
517
The VG is a process with \textbf{finite variation}.
518
The pdf of $X_t$ can be computed conditioning on the realization of $T_t$:
519
\begin{align}\label{VG_density}
520
f_{X_t}(x) &= \int_y f_{X_t,T_t}(x,y) dy = \int_y f_{X_t|T_t}(x|y) f_{T_t}(y) dy \\ \nonumber
521
&= \int_0^{\infty} \frac{1}{\bar\sigma \sqrt{2\pi y}} e^{-\frac{(x -\theta y)^2}{2\bar\sigma^2 y}}
522
\frac{y^{\frac{t}{\kappa} -1}}{\kappa^{\frac{t}{\kappa}} \Gamma(\frac{t}{\kappa})}
523
e^{-\frac{y}{\kappa}} \, dy \\ \nonumber
524
&= \frac{2 \exp(\frac{\theta x}{\bar\sigma^2})}{\kappa^{\frac{t}{\kappa}} \sqrt{2\pi}\bar\sigma \Gamma(\frac{t}{\kappa}) }
525
\biggl( \frac{x^2}{2\frac{\bar\sigma^2}{\kappa} + \theta^2} \biggr)^{\frac{t}{2\kappa}-\frac{1}{4}}
526
K_{\frac{t}{\kappa}-\frac{1}{2}}
527
\biggl( \frac{1}{\bar\sigma^2} \sqrt{x^2 \bigl(\frac{2\bar\sigma^2}{\kappa}+\theta^2 \bigr)} \biggr),
528
\end{align}
529
where the function $K$ is a modified Bessel function of the second kind (see \cite{MCC98} for explicit computations).\\
530
The characteristic function can be obtained from the composition of the Gamma moment generating function and the Normal characteristic functions:
531
\begin{align*}
532
\phi_{X_t}(u) &= \biggl( 1- \kappa \bigl( i u\theta -\frac{1}{2}\bar\sigma^2 u^2 \bigr) \biggr)^{-\frac{t}{\kappa}} \\
533
&= \biggl( 1-i\theta \kappa u + \frac{1}{2} \bar\sigma^2 \kappa u^2 \biggr)^{-\frac{t}{\kappa}}.
534
\end{align*}
535
I will not prove the previous formula, but the interested reader can consult \cite{Applebaum} (Proposition 1.3.17 and Example 1.3.31) or \cite{Cont} (Theorem 4.2).\\
536
The VG Lévy measure is
537
\begin{equation}\label{VG_measure}
538
\nu^{X_t}(dx) = \frac{e^{\frac{\theta x}{\bar\sigma^2}}}{\kappa|x|} \exp
539
\left( - \frac{\sqrt{\frac{2}{\kappa} + \frac{\theta^2}{\bar\sigma^2}}}{\bar\sigma} |x|\right) dx,
540
\end{equation}
541
and the Lévy exponent is
542
\begin{equation}
543
\eta(u) = -\frac{1}{\kappa} \log(1-i\theta \kappa u + \frac{1}{2} \bar\sigma^2 \kappa u^2).
544
\end{equation}
545
Using the formula for the moments (\ref{moments}) we obtain:
546
\begin{align}\label{VG_cumulants}
547
\E[X_t] &= t\theta. \\ \nonumber
548
\mbox{Var}[X_t] &= t(\bar\sigma^2 + \theta^2 \kappa). \\ \nonumber
549
\mbox{Skew}[X_t] &= \frac{t (2\theta^3\kappa^2 + 3 \bar\sigma^2 \theta \kappa)}{\bigl(\mbox{Var}[X_t])^{3/2}}. \\ \nonumber
550
\mbox{Kurt}[X_t] &= \frac{t (3\bar\sigma^4 \kappa + 12\bar\sigma^2 \theta^2 \kappa^2 +6\theta^4\kappa^3)}{\bigl(\mbox{Var}[X_t]\bigr)^2}.\nonumber
551
\end{align}
552
\\
553
The Lévy-It\={o} decomposition (\ref{Levy_Ito3}) for any pure jump finite variation process,
554
can be written as
555
\begin{equation}\label{Levy_Ito4}
556
X_t = \bar b t + \int_{\R} x N(t,dx)
557
\end{equation}
558
with $\bar b = b - \int_{|x|<1} x \nu(dx)$.
559
560
\noindent Let us consider the process (\ref{VG_process}). We can take its expectation
561
$$\E[X_{T_t}] = \theta \E[T_t] + \bar\sigma \E[W_{T_t}] = \theta t,$$
562
which must correspond to the expectation of (\ref{Levy_Ito4}). Using (\ref{Expect_N}) we obtain
563
\begin{align}
564
\E[X_t] &= \bar b t + \E \biggl[ \int_{\R} x N(t,dx)\biggr] \\ \nonumber
565
&= t \biggl( \bar b + \int_{\R} x \, \nu(dx) \biggr), \nonumber
566
\end{align}
567
and therefore $ \bar b = \theta - \int_{\R} x \nu(dx) $.\\
568
Let us compute this integral using the explicit formula (\ref{VG_measure}) for the Lévy measure.
569
Let us call $$A = \frac{\theta}{\bar\sigma^2} \hspace{2em} \mbox{and} \hspace{2em}
570
B=\frac{|\theta|}{\bar\sigma^2}\sqrt{1+\frac{2\bar\sigma^2}{\kappa \theta^2}}$$
571
with $A<B$, and solve the integral:
572
\begin{align*}
573
\int_{\R} \frac{x}{\kappa |x|} e^{Ax-B|x|} &= \int_{0}^{\infty} \frac{1}{\kappa} e^{(A-B)x}
574
- \int_{-\infty}^0 \frac{1}{\kappa} e^{(A+B)x} \\
575
&= \frac{1}{\kappa} \frac{2A}{B^2-A^2} \\
576
&= \theta.
577
\end{align*}
578
Interesting. We found that $\bar b = 0$.
579
The Lévy-It\={o} decomposition for the VG process in (\ref{VG_process}) is simply
580
\begin{equation}
581
X_t = \int_{\R} x N(t,dx).
582
\end{equation}
583
All the information is contained in the Lévy measure (\ref{VG_measure}),
584
which completely describes the process. Even if the process has been created by Brownian
585
subordination, it has no diffusion component. \\
586
The \textbf{L\'evy triplet} is
587
\begin{equation}\label{VG_triplet}
588
\biggl( \int_{|x|<1} x \nu(dx), 0, \nu \biggr).
589
\end{equation}
590
591
592
593
\section{No-Arbitrage pricing}
594
595
In an arbitrage-free market, if the price process $\{S_t\}_{t\geq0}$ follows an exponential Lévy process,
596
we can express the price of any simple financial derivative as a function $V(t,s)$ of the current time
597
$t \in [0,T]$ and current stock price $s=S_t$.
598
In this section we show that $V(t,s)$ can be obtained by solving a partial integro-differential equation (PIDE).
599
600
Let us recall some useful definitions and theorems. For more information have a look at \cite{Cont}.
601
602
The discount factor for $0 \leq s \leq t \leq T$ is defined as
603
\begin{equation}\label{discount_factor}
604
D(s,t) = e^{-\int_s^t r_u du}.
605
\end{equation}
606
In the following we assume a constant interest rate $r_u = r$ for all $u \in [0,T]$. \\
607
It is common to indicate with $\PP$ the physical probability measure and with $\Q$ a risk neutral measure, also called equivalent martingale measure (EMM).
608
\begin{Definition}
609
Given the asset price process $\{S_t\}_{t\geq0}$ defined on the probability space
610
$(\Omega,\mathcal{F},\{\mathcal{F}_{t}\}_{t\geq0},\PP)$, we say that the probability measure $\Q$ is an \textbf{EMM}
611
if it verifies the following two properties:
612
\begin{equation}
613
\Q \sim \PP : \quad \forall A \in \mathcal{F} \quad \quad \Q(A) = 0 \Leftrightarrow \PP(A) = 0,
614
\end{equation}
615
\begin{equation}
616
D(0,t) S_t = \E^{\Q} \bigl[ D(0,T) S_T \big| \F_t \bigr] \quad \mbox{for} \quad 0\leq t \leq T.
617
\end{equation}
618
\end{Definition}
619
620
The concept of \textbf{arbitrage} is related with the existence of an equivalent martingale measures through the \textbf{first fundamental theorem of asset pricing}.
621
\begin{Theorem}
622
A market model does not admit arbitrage if and only if there exists a risk-neutral probability measure.
623
\end{Theorem}
624
Another important concept is the completeness of the market.
625
\begin{Definition}
626
A market model is said to be \textbf{complete} if the payoff of every derivative security can be perfectly hedged.
627
\end{Definition}
628
In a complete market, the unique price of a financial derivative corresponds to the initial capital needed to set up a perfect hedge.\\
629
The completeness of a market is connected with the uniqueness of the EMM through the
630
\textbf{second fundamental theorem of asset pricing}.
631
\begin{Theorem}
632
Consider a market model that has a risk-neutral probability measure. The model is complete if and only if the risk-neutral probability measure is unique.
633
\end{Theorem}
634
635
The ideal market assumed by Black-Scholes is complete.
636
However, the majority of the models used in finance are not.
637
638
In this tutorial, we analyze a market model based on exponential Lévy models, that is not complete.
639
640
In a complete market there is only one arbitrage-free way to price a financial derivative, and the price is defined as the cost to replicate the derivative's payoff.
641
In an incomplete market, instead, the notion of perfect replication does not exist.
642
In in such a market, the class of EMM is infinite,
643
i.e. there are infinite EMMs such that the discounted stock prices are martingales.
644
This means that for every financial derivative there are infinite prices satisfying the condition of no-arbitrage.
645
646
In order to overcome this problem, there are several methods to select the best EMM (see \cite{Cont}, chapter 10).
647
However, the best approach is to derive the model parameters directly from the prices of derivatives
648
already quoted in the market (usually European call and put options with different strikes and maturities).
649
The process of choosing the risk neutral parameters for a model that reproduces the prices in the market is called \textbf{model calibration}.
650
651
652
\subsection{Derivation of the pricing PIDE}
653
654
655
Let $\{X_t\}_{t\geq0}$ be a Lévy process with Lévy triplet $(b,\sigma,\nu)$, satisfying the assumption \ref{AssumptionEM}.
656
The process $\{S_t\}_{t\geq0}$ defined by $S_t = S_0 e^{X_t}$ is a martingale if and only if
657
\begin{equation}\label{martingale_b}
658
b +\frac{1}{2} \sigma^2 + \int_{\R} \bigl( e^z-1 -z\mathbbm{1}_{\{ |z|<1 \}} \bigr) \nu(dz) = 0.
659
\end{equation}
660
In order to prove it, we just need to look at the Eq. (\ref{exp_sde}). The exponential Lévy process is a martingale if and only if the drift is zero.
661
662
Let us consider a stock price process described by the \emph{exponential Lévy model}
663
\begin{equation}\label{ELM2}
664
S_t = S_0 e^{L_t} = S_0 e^{rt + X_t}
665
\end{equation}
666
where $\{X_t\}_{t\geq 0}$ is a Lévy process with Lévy triplet $(b,\sigma,\nu)$, and the process $\{L_t\}_{t\geq 0}$
667
is a Lévy process with triplet $(r+b,\sigma,\nu)$.
668
Under a risk neutral measure $\Q$, the discounted price is a $\Q$-martingale:
669
\begin{equation}
670
\E^{\Q} \bigl[ e^{-rt} S_t \bigr| S_0 \bigr] = \E^{\Q} \bigl[ S_0e^{X_t} \bigr| S_0 \bigr] = S_0,
671
\end{equation}
672
such that $\E^{\Q}[ e^{X_t} | X_0=0] = 1 $.
673
674
We can repeat the same computation that led to Eq. (\ref{exp_sde}) for the process $L_t = X_t + rt$ i.e.
675
\begin{align} \label{exp_sde_RN}
676
\frac{d S_t}{S_{t^-}} \; &= \left(r + b + \frac{1}{2}\sigma^2 + \int_{\R} ( e^{z} - 1 -z\mathbbm{1}_{|z|<1}) \nu(dz) \right) dt \\ \nonumber
677
&+ \sigma dW_t \; + \int_{\R} (e^{z} - 1) \tilde N(dt,dz). \nonumber
678
\end{align}
679
and define the new parameter
680
\begin{equation}\label{mu2}
681
\mu := r + b + \frac{1}{2}\sigma^2 + \int_{\R} ( e^{z} - 1 -z1_{|z|<1}) \nu(dz)
682
\end{equation}
683
Using the condition (\ref{martingale_b}) we obtain the fundamental relation
684
\begin{equation}\label{mu=r}
685
\mu = r.
686
\end{equation}
687
The risk neutral dynamics of (\ref{ELM2}) is described by the SDE:
688
\begin{equation}\label{RN_sde}
689
d S_t = \; r S_{t^-} dt + \sigma S_{t^-} dW_t \; + \int_{\R} S_{t^-} (e^{z} - 1) \tilde N(dt,dz).
690
\end{equation}
691
692
\noindent
693
\textbf{Log variable:}\\
694
In order to obtain a simpler PIDE expression, it turns out that it is better to work with a Lévy process instead of its exponential.
695
So let us invert Eq. (\ref{ELM2})
696
and consider $ L_t = \log \left( \frac{S_t}{S_0} \right)$.
697
This is a Lévy process with finite moment of type (\ref{Levy_Ito2}).
698
The dynamics is described by the SDE:
699
\begin{equation}\label{SDE_log_var}
700
dL_t = \biggl( r + b + \int_{|z|\geq 1}z \nu(dz) \biggr) dt \; + \sigma dW_t + \int_{\R} z \tilde N(dt,dz).
701
\end{equation}
702
At this point, we can make the substitution (\ref{martingale_b}) for the parameter $b$:
703
\begin{equation}\label{SDE_log_var2}
704
dL_t = \biggl( r -\frac{1}{2}\sigma^2 - \int_{\R} \bigl( e^z-1-z \bigr) \nu(dz) \biggr) dt \; + \sigma dW_t + \int_{\R} z \tilde N(dt,dz).
705
\end{equation}
706
707
Using the formula \ref{genLevy2}, the infinitesimal generator has the form
708
\begin{align}\label{RN_log_gen}
709
\LL^L f(x) =& \biggl( r-\frac{1}{2}\sigma^2 - \int_{\R} \bigl( e^z-1-z \bigr) \nu(dz) \biggr) \frac{\partial f(x)}{\partial x} \\ \nonumber
710
&+ \frac{1}{2} \sigma^2 \frac{\partial^2 f(x)}{\partial x^2}
711
+ \int_{\R} \biggl( f(x+z)- f(x) - z \frac{\partial f(x)}{\partial x} \biggr) \nu(dz).
712
\end{align}
713
714
\noindent
715
\textbf{Pricing PIDE:}\\
716
Let us recall the pricing formula for a derivative contract:
717
\begin{equation}\label{derivative_price}
718
V(t,x) = \E^{\Q} \biggl[ D(t,T) V(T,X_T) \bigg| X_t = x \biggr] .
719
\end{equation}
720
721
The derivative pricing function $V(t,x)$ with $t \in [0,T]$ and $x \in \R$, can be obtained by solving a pricing PIDE according to the following theorem.
722
\begin{Theorem}
723
Let us consider an arbitrage free market, where the underlying stock log-price follows the Lévy process (\ref{SDE_log_var2}).
724
Let also assume that $V(t,x) \in C^{1,2}([t_0,T] \times \R)$ and that the partial derivatives are all bounded.
725
Therefore $V(t,x)$ satisfies the PIDE
726
\begin{align}\label{derivative_PIDE}
727
& \frac{\partial V(t,x)}{\partial t} + \LL V(t,x) -r V(t,x) = 0 \\
728
& V(T,x) = \Phi(x),
729
\end{align}
730
where $\LL$ is the infinitesimal generator in (\ref{RN_log_gen}).
731
\end{Theorem}
732
I want to present the proof of this theorem because it is not presented in popular textbooks.
733
Since it involves advanced mathematical concepts, the reader can skip it, if not interested.
734
\begin{proof}
735
Let us consider the formula (\ref{derivative_price}).
736
For any stopping time $\tau$ such that $0 \leq t \leq \tau \leq T$, we can use the law of iterated expectations:
737
\begin{align*}
738
D(0,t) V(t,x) &= \E^{\Q} \biggl[ \E^{\Q} \bigl[ D(0,T) V(T,X_T) \big| X_{\tau} \bigr] \bigg| X_t=x \biggr] \\
739
&= \E^{\Q} \bigl[ D(0,\tau) V(\tau,X_{\tau}) \big| X_t=x \bigr].
740
\end{align*}
741
We can write $D(0,\tau) V(\tau,X_{\tau}) = D(0,t) V(t,x) + \int_t^{\tau} d\bigl(D(t,u) V(u,X_u)\bigr) du$.
742
Using the It\=o formula (\ref{Ito_form}), we get:
743
\begin{align}\label{proof_Cont_V}
744
0 =& \; \E^{\Q} \biggl[ \int_t^{\tau} e^{-r(u-t)} \biggl( \frac{\partial V(u,X_{u^-})}{\partial u} + \LL V(u,X_{u^-}) -r V(u,X_{u^-}) \biggr) du \bigg| X_t=x \biggr] \\ \label{term1}
745
& + \E^{\Q} \biggl[ \int_t^{\tau} e^{-r(u-t)} \frac{\partial V(u,X_{u^-})}{\partial x} \sigma \; dW_u \; \bigg| X_t=x \biggr] \\ \label{term2}
746
& + \E^{\Q} \biggl[ \int_t^{\tau} e^{-r(u-t)} \int_{\R} \bigl( V(u,X_{u^-} + z) - V(u,X_{u^-}) \bigr) \tilde N(du,dz) \; \bigg| X_t=x \biggr]
747
\end{align}
748
where we introduced the explicit expression of the discount factor (\ref{discount_factor}) with constant $r$.
749
The terms inside the expectations in the second and third lines are well defined if they are square integrable martingales\footnote{A martingale $\{M_t\}_{t\geq0}$ is square
750
integrable if $\E[M_t^2] < \infty$ for every $t$.}. Now we verify that they are well defined by using the well known \emph{It\=o isometry}
751
(for more information see Chapter 8 of \cite{Cont}).
752
Let us look at the integrability condition for the term (\ref{term1}).
753
\begin{align*}
754
& \E^{\Q} \biggl[ \int_t^{\tau} \big| e^{-r(u-t)} \frac{\partial V(u,X_{u^-})}{\partial x} \sigma \big|^2 du \; \bigg| X_t=x \biggr] \\
755
& \leq \sigma^2 C^2\, \E^{\Q} \biggl[ \int_t^{\tau} \big| e^{-r(u-t)} \big|^2 du \; \bigg| X_t=x \biggr] < \infty
756
\end{align*}
757
where we used the fact that the derivative is bounded by a constant $C$.\\
758
Let us look at the integrability condition for the term (\ref{term2}).
759
\begin{align*}
760
& \E^{\Q} \biggl[ \int_t^{\tau} \int_{\R} \bigg| e^{-r(u-t)} \bigl( V(u,X_{u^-} + z) - V(u,X_{u^-}) \bigr) \bigg|^2 \nu(dz) dt \; \bigg| X_t=x \biggr] \\
761
& \leq \E^{\Q} \biggl[ \int_t^{\tau} \int_{\R} \bigg| e^{-r(u-t)} C z \bigg|^2 \nu(dz) dt \; \bigg| X_t=x \biggr] \\
762
& \leq C^2 \int_{\R} z^2 \nu(dz) \; \int_t^{T} \bigg| e^{-r(u-t)} \bigg|^2 dt < \infty.
763
\end{align*}
764
In the second line we used the Lipschitz property of $V(t,x)$\footnote{A $C^1(\R)$ function $f$ with bounded derivative is Lipschitz. This can be easily proved.\\
765
Let $a,b \in \R$ with $a<b$, by the mean value theorem there exists $c\in [a,b]$ such that $f(b)-f(a) = f'(c) (b-a)$. Using $|f'(c)|\leq C$, we obtain the Lipschitz condition
766
$$ f(b)-f(a) \leq C (b-a). $$}.
767
In the third line, the integral $\int_{\R} z^2 \nu(dz)$ is finite thanks to (\ref{Levy_m}) and the finite second moment assumption (see Section \ref{LevyIto_sec}).\\
768
We just verified that these terms are square integrable martingales. It follows that their expectation is zero! \\
769
770
Now let us consider (\ref{proof_Cont_V}).
771
By definition, the terms inside the integral are all continuous and are all bounded by some linear function.
772
We can divide both sides by $(\tau-t)$ and take the limit for $\tau \to t$. Using the mean value theorem, there exists $u \in [t,\tau]$ such that
773
$$ \lim_{u \to t} \E^{\Q} \biggl[ e^{-r(u-t)} \biggl( \frac{\partial V(u,X_u)}{\partial u} + \LL V(u,X_u) -r V(u,X_u) \biggr) \bigg| X_t=x \biggr] = 0. $$
774
When $\tau\to t$ also $u\to t$. Thanks to the dominated convergence theorem we can take the limit inside the expectation and conclude the proof.
775
\end{proof}
776
In practice, the hypothesis of the theorem above are rarely satisfied.
777
The payoff $\Phi$ is usually not in the domain of $\LL$ and sometimes is not even differentiable, e.g. call/put options.
778
For this reasons, the option price should be considered a solution of (\ref{derivative_PIDE}) in a weaker sense.
779
The notion of \emph{viscosity solution} allows to cover this case.
780
For a complete exposition on this topic, we refer to \cite{CoVo05}, where the authors prove that in a general setting,
781
option prices in exponential Lévy models correspond to viscosity solutions of the pricing PIDE.\\
782
783
\noindent
784
The \textbf{pricing PIDE} is:
785
\begin{align}\label{PIDE_log}
786
& \frac{\partial V(t,x)}{\partial t} - r V(t,x)
787
+ \biggl( r -\frac{1}{2}\sigma^2 - \int_{\R} \bigl( e^z-1-z \bigr) \nu(dz) \biggr) \frac{\partial V(t,x)}{\partial x} \\ \nonumber
788
&+ \frac{1}{2} \sigma^2 \frac{\partial^2 V(t,x)}{\partial x^2}
789
+ \int_{\R} \bigl( V(t,x+z)- V(t,x) - z \frac{\partial V(t,x)}{\partial x} \bigr) \nu(dz) = 0.
790
\end{align}
791
With boundary conditions:\\
792
CALL:
793
\begin{itemize}
794
\item Terminal:
795
$$ V(T,x) = \max(e^x-K,0), $$
796
\item Lateral:
797
$$ V(t, x) \underset{x \to -\infty}{=} 0 \quad \mbox{and} \quad V(t, x) \underset{x \to \infty}{\sim} e^x - Ke^{-r(T-t)}. $$
798
\end{itemize}
799
PUT:
800
\begin{itemize}
801
\item Terminal:
802
$$ V(T,x) = \max(K-e^x,0), $$
803
\item Lateral:
804
$$ V(t, x) \underset{x \to -\infty}{\sim} = Ke^{-r(T-t)} \quad \mbox{and} \quad V(t, x) \underset{x \to \infty}{=} 0. $$
805
\end{itemize}
806
807
808
\section{PIDEs}
809
810
\subsection{Black-Scholes PDE}
811
The \cite{BS73} model assumes a geometric Brownian motion for the dynamics of the underlying.
812
Let us consider a Lévy process $\{X_t\}_{t\geq 0}$ with triplet $(b,\sigma,0)$.
813
Using these values of the triplet, the pricing PDE (\ref{PIDE_log}) is
814
\begin{equation}\label{BS_PDE}
815
\frac{\partial V(t,x)}{\partial t}
816
+ \biggl( r -\frac{1}{2}\sigma^2 \biggr) \frac{\partial V(t,x)}{\partial x}
817
+ \frac{1}{2} \sigma^2 \frac{\partial^2 V(t,x)}{\partial x^2} - r V(t,x) = 0.
818
\end{equation}
819
This is the Black-Scholes PDE in log-variables.
820
The Lévy measure is identically null and therefore there is no integral term.
821
822
823
\subsection{Merton PIDE}
824
825
I presented the Merton model in section \ref{Merton_section}.\\
826
Let us recall that the jump component of the Merton process has finite activity, $\nu(\R) = \lambda < \infty$.
827
The pricing PIDE (\ref{PIDE_log}) becomes:
828
\begin{align}\label{Merton_PIDE}
829
& \frac{\partial V(t,x)}{\partial t} - r V(t,x)
830
+ \biggl( r -\frac{1}{2}\sigma^2 -m \biggr) \frac{\partial V(t,x)}{\partial x} \\ \nonumber
831
&+ \frac{1}{2} \sigma^2 \frac{\partial^2 V(t,x)}{\partial x^2}
832
+ \int_{\R} V(t,x+z) \nu(dz) - \lambda V(t,x) = 0.
833
\end{align}
834
with $m$ defined as
835
\begin{align}\label{parameter_m}
836
m :=& \; \int_{\R} ( e^{x} - 1 ) \nu(dx) \\
837
=& \; \lambda \bigl( \phi_X(-i) - 1 \bigr) \\
838
=& \; \lambda \biggl( e^{\alpha + \frac{1}{2} \xi^2} -1 \biggr).
839
\end{align}
840
where $X \sim \mathcal{N}(\alpha, \xi^2)$.
841
Recall that the Lévy measure (\ref{Merton_measure}) is a scaled normal distribution.\\
842
The previous equation (\ref{Merton_PIDE}) is called \textbf{Merton PIDE}, in log-variables.
843
844
845
\subsection{Variance Gamma PIDE}
846
847
848
We introduced the Variance Gamma process in Section \ref{VG_section}. \\
849
The VG process has infinite activity i.e.
850
$\nu(\R) = \infty$ and has the triplet presented in (\ref{VG_triplet}),
851
with $\nu$ in eq. (\ref{VG_measure}).
852
853
From the general PIDE pricing formula (\ref{PIDE_log}), we obtain the \textbf{VG PIDE}:
854
\begin{equation} \label{VG_PIDE}
855
\frac{\partial V(t,x)}{\partial t} + (r-w) \frac{\partial V(t,x)}{\partial x}
856
+ \int_{\R} \bigl[ V(t,x+z) - V(t,x) \bigr] \nu(dz) = rV(t,x) .
857
\end{equation}
858
with $w$ defined as:
859
\begin{equation}\label{parameter_w}
860
w := \int_{\R} (e^x-1) \nu(dx) = - \frac{1}{\kappa} \log \left( 1-\theta \kappa -\frac{1}{2}\bar\sigma^2 \kappa \right).
861
\end{equation}
862
Here it is not possible to separate the integrands because the process has infinite activity, and they are both infinite.\\
863
However, since the VG process has finite variation, this integral is finite because $e^x-1 = x + \mathcal{O}(x^2)$.
864
865
866
In order to calculate the integral, we use the following relation between the Lévy measure and the transition probability\footnote{With our notation we indicate the
867
probability that the process starting from $0$ at time $0$, is inside the interval $dx$ at time $t$.}
868
$p_{0,t}(0,dx)$ of the process:
869
\begin{equation}
870
\nu(dx) = \lim_{t\to 0} \frac{1}{t} p_{0,t}(0,dx).
871
\end{equation}
872
This relation is presented by \cite{Cont} in Chapter 3.6, and a proof can be found in Corollary 8.9 of \cite{Sato}. \\
873
Let us compute the expected value of the exponential VG process
874
\begin{align*}
875
\E[ e^{X_t}] &= \phi_{X_t}(-i) = \exp \biggl( -\frac{t}{\kappa} \log(1-\theta \kappa -\frac{1}{2}\bar\sigma^2 \kappa ) \biggr)\\
876
&= e^{w t}
877
\end{align*}
878
where we called $w = - \frac{1}{\kappa} \log(1-\theta \kappa -\frac{1}{2}\bar\sigma^2 \kappa)$.
879
The integral becomes
880
\begin{align*}
881
\int_{\R} (e^x-1) \nu(dx) &= \int_{\R} (e^x-1) \lim_{t\to 0} \frac{1}{t} p_{0,t}(0,dx) \\
882
&= \lim_{t\to 0} \frac{1}{t} \E[ e^{X_t} - 1 ] \\
883
&= \lim_{t\to 0} \frac{1}{t} \biggl( e^{w t} - 1 \biggr) \\
884
&= w.
885
\end{align*}
886
We can always take the limit outside the integral, because the integral is finite.
887
888
889
\subsubsection{Brownian approximation}
890
891
Unfortunately, it is not straightforward to solve equation (\ref{VG_PIDE}). The Lévy measure has a singularity in the origin,
892
that should be removed before any kind of discretization.
893
894
An idea to overcome this problem, that can be applied to any Lévy processes with infinite activity, is presented in \cite{CoVo05b}.
895
The authors propose to approximate the process $\{L_t\}_{t\geq0}$ in (\ref{SDE_log_var2}) by an
896
appropriate finite activity process with a modified diffusion component.
897
The ``small jumps'' martingale component is approximated by a Brownian motion with same variance.
898
After fixing a truncation parameter $\epsilon >0$, the integrals in the SDE are split in two domains: $\{|z|<\epsilon\}$ and $\{|z|\geq \epsilon\}$.
899
The integrand on the domain $\{ |z|<\epsilon \}$, is approximated by the Taylor expansion
900
$e^z-1-z = \frac{z^2}{2} + \mathcal{O}(z^3)$ such that
901
\begin{align}\label{log_sde_inf_act}\nonumber
902
dL_t =& \biggl( r -\frac{1}{2}\sigma^2 - \int_{\R} \bigl( e^z-1-z \bigr) \nu(dz) \biggr)dt + \sigma dW + + \int_{\R} z \tilde N(dt,dz) \\ \nonumber
903
=& \biggl( r - \frac{1}{2}\sigma^2 -\int_{|z|<\epsilon} (e^z-1-z) \nu(dz) -\int_{|z|\geq \epsilon} (e^z-1-z) \nu(dz) \biggr) dt\\ \nonumber
904
&+ \sigma dW_t + \underbrace{\int_{|z|< \epsilon} z \tilde N(dt,dz)}_{\sigma_{\epsilon} dW_t} + \int_{|z| \geq \epsilon} z \tilde N(dt,dz) \\
905
=& \biggl( r - \frac{1}{2} (\sigma^2 + \sigma_{\epsilon}^2) - w_{\epsilon} + \lambda_{\epsilon} \theta_{\epsilon} \biggr) dt + \bigl( \sigma+\sigma_{\epsilon}\bigr) dW_t
906
+ \int_{|z|\geq \epsilon} z \tilde N(dt,dz) ,
907
\end{align}
908
where we defined the new parameters
909
\begin{align}\label{sig_eps}
910
& \sigma_{\epsilon}^2 := \int_{|z| < \epsilon} z^2 \nu(dz), \quad \quad w_{\epsilon} := \int_{|z| \geq \epsilon} (e^z-1) \nu(dz), \\ \nonumber
911
& \lambda_{\epsilon} := \int_{|z| \geq \epsilon} \nu(dz), \quad \quad \theta_{\epsilon} := \frac{1}{\lambda_{\epsilon}} \int_{|z| \geq \epsilon} z \nu(dz) .
912
\end{align}
913
The process $\int_{|z|\geq \epsilon} z \tilde N(dt,dz)$ is a compensated Poisson process with finite activity $\lambda_{\epsilon}$.
914
915
For the VG process, where $\sigma = 0$, the approximated dynamics is thus
916
\begin{equation}\label{log_sde_VG}
917
dL_t = \biggl( r - \frac{1}{2} \sigma_{\epsilon}^2 - w_{\epsilon} + \lambda_{\epsilon} \theta_{\epsilon} \biggr) dt
918
+ \sigma_{\epsilon} dW_t + \int_{|z|\geq \epsilon} z \tilde N(dt,dz),
919
\end{equation}
920
or the equivalent
921
\begin{equation}
922
dL_t = \biggl( r - \frac{1}{2} \sigma_{\epsilon}^2 - w_{\epsilon} \biggr) dt
923
+ \sigma_{\epsilon} dW_t + \int_{|z|\geq \epsilon} z N(dt,dz),
924
\end{equation}
925
where the parameters are obtained from the Lévy measure (\ref{VG_measure}).
926
927
The \textbf{approximated VG PIDE} is:
928
\begin{align}\label{VG_JD}
929
& \frac{\partial V(t,x)}{\partial t} +
930
\bigl( r-\frac{1}{2}\sigma_{\epsilon}^2 - w_{\epsilon} \bigr) \frac{\partial V(t,x)}{\partial x}
931
+ \frac{1}{2}\sigma_{\epsilon}^2 \frac{\partial^2 V(t,x)}{\partial x^2} \\ \nonumber
932
&+ \int_{|z| \geq \epsilon} V(t,x+z) \nu(dz) = (\lambda_{\epsilon} + r) V(t,x).
933
\end{align}
934
It has the same ``jump-diffusion'' form of the Merton PIDE, except for the truncation in the integral.
935
936
937
938
939
\bibliographystyle{apalike}
940
\bibliography{/home/nicola/Documenti/ISEG/Bibliografia/trans_cost.bib,/home/nicola/Documenti/ISEG/Bibliografia/book.bib,/home/nicola/Documenti/ISEG/Bibliografia/fin_math.bib,/home/nicola/Documenti/ISEG/Bibliografia/viscosity.bib,/home/nicola/Documenti/ISEG/Bibliografia/num_meth.bib,/home/nicola/Documenti/ISEG/Bibliografia/phd_thesis.bib,/home/nicola/Documenti/ISEG/Bibliografia/Levy.bib,/home/nicola/Documenti/ISEG/Bibliografia/control.bib}
941
942
\end{document}
943
944
945
946
947
948
949