Path: blob/master/44_tf_data_pipeline/tf_data_pipeline.ipynb
1141 views
Kernel: Python 3
In [228]:
Create tf dataset from a list
In [229]:
Out[229]:
<TensorSliceDataset shapes: (), types: tf.int32>
Iterate through tf dataset
In [230]:
Out[230]:
21
22
-108
31
-1
32
34
31
Iterate through elements as numpy elements
In [231]:
Out[231]:
21
22
-108
31
-1
32
34
31
Iterate through first n elements in tf dataset
In [232]:
Out[232]:
21
22
-108
Filter sales numbers that are < 0
In [233]:
Out[233]:
21
22
31
32
34
31
Convert sales numbers from USA dollars ($) to Indian Rupees (INR) Assuming 1->72 conversation rate
In [234]:
Out[234]:
1512
1584
2232
2304
2448
2232
Shuffe
In [235]:
Out[235]:
1512
2232
2304
2448
2232
1584
Batching
In [236]:
Out[236]:
[1584 2232]
[2304 2448]
[2232 1512]
Perform all of the above operations in one shot
In [237]:
Out[237]:
[1512 2232]
[1584 2448]
[2304 2232]
Images
In [238]:
In [239]:
Out[239]:
130
In [240]:
Out[240]:
tensorflow.python.data.ops.dataset_ops.TensorSliceDataset
In [241]:
Out[241]:
b'images\\cat\\20 Reasons Why Cats Make the Best Pets....jpg'
b'images\\cat\\7 Foods Your Cat Can_t Eat.jpg'
b'images\\cat\\A cat appears to have caught the....jpg'
In [242]:
Out[242]:
b'images\\dog\\The US Army is testing augmented....jpg'
b'images\\dog\\Subaru Shows Love for Dogs Through the....jpg'
b'images\\cat\\Reality check_ Can cat poop cause....jpg'
In [243]:
In [244]:
In [245]:
Out[245]:
104
In [246]:
Out[246]:
26
In [247]:
In [248]:
Out[248]:
<tf.Tensor: shape=(), dtype=string, numpy=b'dog'>
In [249]:
In [250]:
Out[250]:
array([[[155. , 186. , 215. ],
[156. , 187. , 216. ],
[158. , 189. , 218. ],
[160.0039 , 189.0039 , 219.0039 ],
[161.0039 , 190.0039 , 220.0039 ],
[162. , 191. , 221. ],
[166. , 193. , 222. ],
[167. , 194. , 223. ],
[168. , 195. , 224. ],
[169. , 196. , 225. ],
[170. , 197. , 224. ],
[170.0039 , 197.0039 , 224.0039 ],
[172. , 199. , 226. ],
[173.0039 , 199.0039 , 224.0039 ],
[174.0039 , 200.0039 , 225.0039 ],
[175.0039 , 201.0039 , 226.0039 ],
[176. , 202. , 227. ],
[177.0039 , 203.0039 , 228.0039 ],
[177.0039 , 203.0039 , 228.0039 ],
[179.0039 , 203.0039 , 227.0039 ],
[180.0039 , 204.0039 , 228.0039 ],
[180.0039 , 204.0039 , 228.0039 ],
[181.0039 , 206.0039 , 228.0039 ],
[182.0039 , 207.0039 , 229.0039 ],
[184. , 209. , 231. ],
[184. , 209. , 231. ],
[184. , 209. , 231. ],
[184. , 209. , 231. ],
[182.9961 , 207.9961 , 229.9961 ],
[174.9961 , 201.9961 , 222.9961 ],
[168.9961 , 195.9961 , 216.9961 ],
[158.99219 , 185.99219 , 206.99219 ],
[143.9961 , 168.9961 , 190.9961 ],
[131.9961 , 148.98828 , 168.98438 ],
[115.98828 , 126.97266 , 132.97266 ],
[106.98047 , 102.984375, 99.97656 ],
[ 98.99219 , 95.984375, 90.98047 ],
[ 97.99219 , 95.99219 , 83.98828 ],
[ 97.99219 , 91.99219 , 77.99219 ],
[ 98.99609 , 91.99609 , 75.99609 ],
[ 99. , 92. , 74. ],
[102. , 95. , 77. ],
[112.99609 , 103.99609 , 86.99609 ],
[125.99609 , 113.99609 , 99.99609 ],
[133.99219 , 119.99219 , 108.99219 ],
[139.99219 , 127.99219 , 113.99219 ],
[143.9961 , 131.9961 , 117.99609 ],
[143.9961 , 131.9961 , 117.99609 ],
[142. , 128. , 119. ],
[135.0039 , 122.00391 , 113.00391 ],
[122.00391 , 114.00391 , 103.00391 ],
[112.00391 , 103.00391 , 94.00391 ],
[102.00391 , 95.00391 , 87.00391 ],
[ 91. , 86. , 80. ],
[ 83. , 78. , 72. ],
[ 75.00391 , 70.00391 , 64.00391 ],
[ 69. , 64. , 58. ],
[ 61. , 58. , 51. ],
[ 59. , 54. , 51. ],
[ 61.996094, 52.996094, 55.996094],
[ 62.996094, 49.996094, 58.996094],
[ 61. , 49. , 53. ],
[ 60. , 48. , 52. ],
[ 59. , 47. , 51. ],
[ 57. , 45. , 49. ],
[ 55. , 45. , 44. ],
[ 50.996094, 43.996094, 37.996094],
[ 45.996094, 42.996094, 35.996094],
[ 45.996094, 42.996094, 33.996094],
[ 45. , 43. , 31. ],
[ 46. , 44. , 31. ],
[ 48. , 46. , 33. ],
[ 48. , 46. , 33. ],
[ 49.003906, 47.003906, 34.003906],
[ 57.003906, 55.003906, 42.003906],
[ 63.007812, 61.007812, 48.007812],
[ 71.01172 , 69.01172 , 56.01172 ],
[ 75.01172 , 73.01172 , 61.01172 ],
[ 77.00781 , 75.00781 , 63.007812],
[ 78.00391 , 76.00391 , 64.00391 ],
[ 77.00391 , 75.00391 , 63.003906],
[ 74.00781 , 72.00781 , 59.007812],
[ 73.00391 , 71.00391 , 56.003906],
[ 77.00391 , 71.00391 , 55.003906],
[ 82. , 76. , 60. ],
[ 85.00391 , 79.00391 , 63.003906],
[ 88. , 82. , 70. ],
[ 88. , 81. , 71. ],
[ 85. , 82. , 75. ],
[ 83. , 80. , 73. ],
[ 77.99609 , 76.99609 , 71.99609 ],
[ 74.99609 , 73.99609 , 69.99609 ],
[ 72. , 71. , 69. ],
[ 70. , 69. , 65. ],
[ 69. , 68. , 64. ],
[ 69. , 68. , 64. ],
[ 70. , 69. , 65. ],
[ 71. , 70. , 66. ],
[ 70. , 69. , 65. ],
[ 69.99609 , 68.99609 , 66.99609 ],
[ 68. , 67. , 65. ],
[ 66. , 65. , 63. ],
[ 64. , 63. , 59. ],
[ 63. , 62. , 58. ],
[ 63. , 62. , 58. ],
[ 65. , 64. , 60. ],
[ 69.00391 , 70.00391 , 65.00391 ],
[ 78.00391 , 78.00391 , 69.99609 ],
[ 89.00781 , 87.00781 , 75.00781 ],
[103.00391 , 97.00391 , 83.00391 ],
[113.01172 , 106.01172 , 90.01172 ],
[123.00781 , 114.00781 , 97.00781 ],
[135.01172 , 124.01172 , 102.01172 ],
[144.00781 , 133.00781 , 111.00781 ],
[149.0039 , 138.0039 , 116.00391 ],
[149.00781 , 137.00781 , 111.00781 ],
[147.0039 , 135.0039 , 111.00391 ],
[145.0039 , 133.0039 , 111.00391 ],
[140.0039 , 127.00391 , 108.00391 ],
[130.0039 , 119.00391 , 101.00391 ],
[118.00391 , 108.00391 , 96.00391 ],
[108. , 100. , 89. ],
[ 99. , 93. , 79. ],
[ 96.99609 , 90.99609 , 76.99609 ],
[ 94. , 88. , 74. ],
[ 90.99609 , 84.99609 , 72.99609 ],
[ 92. , 86. , 74. ],
[ 93. , 87. , 75. ]],
[[156.01172 , 187.01172 , 216.01172 ],
[157.02344 , 188.02344 , 217.02344 ],
[159.01172 , 190.01172 , 219.01172 ],
[162. , 191. , 221. ],
[163. , 192. , 222. ],
[164.01172 , 193.01172 , 223.01172 ],
[167.01172 , 194.01172 , 223.01172 ],
[168.01172 , 195.01172 , 224.01172 ],
[169. , 196. , 225. ],
[170.01172 , 197.01172 , 226.01172 ],
[171.01172 , 198.01172 , 225.01172 ],
[172. , 199. , 226. ],
[173. , 200. , 227. ],
[175. , 201. , 226. ],
[176. , 202. , 227. ],
[177. , 203. , 228. ],
[177. , 203. , 228. ],
[178.98828 , 204.98828 , 229.98828 ],
[179. , 205. , 230. ],
[181. , 205. , 229. ],
[182. , 206. , 230. ],
[182. , 206. , 230. ],
[183. , 208. , 230. ],
[184. , 209. , 231. ],
[184.98828 , 209.98828 , 231.98828 ],
[184.97656 , 209.97656 , 231.97656 ],
[186. , 207.98828 , 230.96484 ],
[185. , 206.98828 , 229.96484 ],
[180.01172 , 202. , 224.97656 ],
[173.01172 , 194.98828 , 218.98828 ],
[167.01172 , 186.98828 , 210.96484 ],
[154.02344 , 175. , 193.97656 ],
[138. , 158.97656 , 177.92969 ],
[125.98828 , 136.95312 , 142.91797 ],
[109. , 105.98828 , 98.96484 ],
[101.01172 , 93. , 79.97656 ],
[ 99.03516 , 91.02344 , 78. ],
[ 99. , 91.97656 , 73.98828 ],
[ 98.97656 , 90.97656 , 77.97656 ],
[ 99. , 92. , 76. ],
[ 99. , 92. , 74. ],
[101.96484 , 94.96484 , 76.96484 ],
[109.98828 , 100.98828 , 85.98828 ],
[120.01172 , 108.01172 , 96.01172 ],
[131.01172 , 117.01172 , 108.01172 ],
[138.02344 , 126.01172 , 114.046875],
[143. , 130.98828 , 119.02344 ],
[146.01172 , 134. , 122.03516 ],
[144.02344 , 130.02344 , 121.02344 ],
[138.98828 , 125.98828 , 116.98828 ],
[128.01172 , 120.01172 , 109.01172 ],
[115.02344 , 106.02344 , 97.02344 ],
[105.01172 , 98.01172 , 90.01172 ],
[ 92.98828 , 87.98828 , 81.98828 ],
[ 82.98828 , 79.98828 , 72.98828 ],
[ 76. , 73. , 66. ],
[ 68.01172 , 65.01172 , 58.01172 ],
[ 61. , 58. , 51. ],
[ 59. , 54. , 51. ],
[ 60.023438, 51.023438, 54.023438],
[ 61.01172 , 48.01172 , 57.01172 ],
[ 60. , 48. , 52. ],
[ 60.01172 , 48.01172 , 52.01172 ],
[ 59. , 47. , 51. ],
[ 56. , 46. , 47. ],
[ 53.98828 , 45.98828 , 42.98828 ],
[ 45.98828 , 41.98828 , 32.98828 ],
[ 42.98828 , 40. , 30.964844],
[ 42.98828 , 40.98828 , 28.976562],
[ 43.98828 , 41.98828 , 28.964844],
[ 46. , 44. , 31. ],
[ 48.035156, 46.035156, 33.035156],
[ 51.046875, 49.046875, 36.046875],
[ 58.046875, 56.046875, 43.046875],
[ 70.01172 , 66.01172 , 54.01172 ],
[ 76.03516 , 72.03516 , 60.035156],
[ 84.05859 , 80.05859 , 68.05859 ],
[ 87.03516 , 85.03516 , 73.03516 ],
[ 85.05859 , 83.05859 , 71.05859 ],
[ 86.02344 , 84.02344 , 72.02344 ],
[ 83.02344 , 80.02344 , 71.046875],
[ 81.01172 , 79. , 67.03516 ],
[ 79.02344 , 77.02344 , 64.02344 ],
[ 83.01172 , 77.01172 , 63.035156],
[ 84.02344 , 78.02344 , 64.046875],
[ 88. , 82. , 68.02344 ],
[ 89.98828 , 82.98828 , 72.98828 ],
[ 90.01172 , 83.01172 , 73.01172 ],
[ 85. , 82. , 75. ],
[ 83. , 80. , 73. ],
[ 76. , 75. , 70. ],
[ 73.01172 , 72.01172 , 68.01172 ],
[ 71. , 70. , 68. ],
[ 70. , 69. , 65. ],
[ 69. , 68. , 64. ],
[ 69. , 68. , 64. ],
[ 69. , 68. , 64. ],
[ 69.98828 , 68.98828 , 64.98828 ],
[ 69. , 68. , 64. ],
[ 67.98828 , 66.98828 , 62.98828 ],
[ 66.98828 , 65.98828 , 61.98828 ],
[ 64.98828 , 63.98828 , 59.98828 ],
[ 63. , 62. , 58. ],
[ 62. , 61. , 57. ],
[ 63. , 62. , 58. ],
[ 65.02344 , 64.02344 , 60.023438],
[ 72.03516 , 71.01172 , 65.98828 ],
[ 83.02344 , 80.01172 , 70.98828 ],
[ 96.03516 , 92.01172 , 79.98828 ],
[112.03516 , 106.02344 , 90.02344 ],
[127.02344 , 118.03516 , 101.01172 ],
[135.0586 , 127.02344 , 108.03516 ],
[145.98828 , 134.98828 , 112.98828 ],
[150.98828 , 139.98828 , 117.98828 ],
[152.01172 , 141.01172 , 119.01172 ],
[150.98828 , 139.01172 , 115. ],
[144.98828 , 133. , 111. ],
[143.98828 , 131.01172 , 112. ],
[139.98828 , 128.98828 , 110.98828 ],
[130.97656 , 119.01172 , 103.02344 ],
[118.98828 , 110.98828 , 99.98828 ],
[107.96484 , 100.96484 , 90.96484 ],
[ 96.97656 , 92.97656 , 82. ],
[ 92.01172 , 88.01172 , 77.03516 ],
[ 89.98828 , 85.98828 , 75.01172 ],
[ 86.98828 , 82.97656 , 74.01172 ],
[ 89.97656 , 85.96484 , 77. ],
[ 91. , 86.98828 , 78.02344 ]]], dtype=float32)
In [251]:
In [252]:
Out[252]:
**** tf.Tensor(
[[[ 29.873047 38.558594 42.558594 ]
[ 39.064453 44.21875 49.67578 ]
[ 37.009766 45.01953 51.259766 ]
...
[ 45.779297 23.298828 3.0097656]
[ 46.509766 22.773438 3.96875 ]
[ 45.439453 20.470703 3.15625 ]]
[[ 38.34375 45.10547 50.34375 ]
[ 41.353516 47.35742 54.916016 ]
[ 41.65625 52.347656 60.9375 ]
...
[ 47.820312 23.878906 2.9414062]
[ 46.86914 21.789062 2.9335938]
[ 44.648438 20.861328 2.8125 ]]
[[ 45.498047 52.89453 59.041016 ]
[ 48.070312 55.191406 63.191406 ]
[ 51.035156 58.746094 64.85742 ]
...
[ 49.72461 24.107422 4.732422 ]
[ 48.439453 24.001953 3. ]
[ 47.716797 23.259766 3.0722656]]
...
[[107.46094 75.94922 39.396484 ]
[106.0293 75.6582 41.5625 ]
[106.25 76.85742 43.61133 ]
...
[101.078125 64.11328 26.050781 ]
[102.02539 66.02539 24.90039 ]
[ 97.71875 64.00195 25.667969 ]]
[[101.90625 72.40039 35.43164 ]
[104.625 73.92383 40.39258 ]
[106.44922 76.86328 45.76758 ]
...
[102.48633 66.427734 26.548828 ]
[ 99.69531 63.570312 22.77539 ]
[ 98.49414 64.875 25.74414 ]]
[[100.71484 71.05859 35.316406 ]
[101.57422 72.24414 36.54492 ]
[105.93359 78.13281 45.01758 ]
...
[100.22266 66.13672 27.761719 ]
[ 97.60547 64.35547 22.88086 ]
[ 97.99219 62.5625 24.492188 ]]], shape=(128, 128, 3), dtype=float32)
**** tf.Tensor(b'cat', shape=(), dtype=string)
In [253]:
In [254]:
In [255]:
Out[255]:
****Image: [0.10965074 0.1645527 0.03097427]
****Label: b'dog'
****Image: [0.60398287 0.6628064 0.6510417 ]
****Label: b'dog'
****Image: [0.14935039 0.19651932 0.14156231]
****Label: b'cat'
****Image: [0.8718137 0.91495097 0.9227941 ]
****Label: b'dog'
****Image: [0.9059021 0.9137452 0.85884327]
****Label: b'dog'