Path: blob/master/45_prefatch/prefetch_caching.ipynb
1141 views
Kernel: Python 3
Optimize tensorflow pipeline performance with prefetch and caching
In [14]:
In [15]:
Out[15]:
'2.5.0'
Prefetch
In [16]:
In [17]:
In [18]:
Out[18]:
304 ms ± 10.8 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
In [23]:
Out[23]:
238 ms ± 6.64 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
In [19]:
Out[19]:
240 ms ± 7.28 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
As you can notice above, using prefetch improves the performance from 304 ms to 238 and 240 ms
Cache
In [30]:
Out[30]:
[0, 1, 4, 9, 16]
In [29]:
Out[29]:
[0, 1, 4, 9, 16]
In [24]:
In [26]:
Out[26]:
1.25 s ± 0 ns per loop (mean ± std. dev. of 1 run, 1 loop each)
In [27]:
Out[27]:
528 ms ± 0 ns per loop (mean ± std. dev. of 1 run, 1 loop each)
Further reading https://www.tensorflow.org/guide/data_performance#caching