Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
debakarr
GitHub Repository: debakarr/machinelearning
Path: blob/master/Part 1 - Data Preprocessing/categorical_data.R
1002 views
1
# Data Preprocessing
2
3
# Importing the dataset
4
dataset = read.csv('Data.csv')
5
6
# Taking care of missing data
7
dataset$Age = ifelse(is.na(dataset$Age),
8
ave(dataset$Age, FUN = function(x) mean(x, na.rm = TRUE)),
9
dataset$Age)
10
dataset$Salary = ifelse(is.na(dataset$Salary),
11
ave(dataset$Salary, FUN = function(x) mean(x, na.rm = TRUE)),
12
dataset$Salary)
13
14
# Encoding categorical data
15
dataset$Country = factor(dataset$Country,
16
levels = c('France', 'Spain', 'Germany'),
17
labels = c(1, 2, 3))
18
dataset$Purchased = factor(dataset$Purchased,
19
levels = c('No', 'Yes'),
20
labels = c(0, 1))
21