Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
debakarr
GitHub Repository: debakarr/machinelearning
Path: blob/master/Part 1 - Data Preprocessing/data_preprocessing_template.py
1002 views
1
# Data Preprocessing Template
2
3
# Importing the libraries
4
import numpy as np
5
import matplotlib.pyplot as plt
6
import pandas as pd
7
8
# Importing the dataset
9
dataset = pd.read_csv('Data.csv')
10
X = dataset.iloc[:, :-1].values
11
y = dataset.iloc[:, 3].values
12
13
# Splitting the dataset into the Training set and Test set
14
from sklearn.cross_validation import train_test_split
15
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 0)
16
17
# Feature Scaling
18
"""from sklearn.preprocessing import StandardScaler
19
sc_X = StandardScaler()
20
X_train = sc_X.fit_transform(X_train)
21
X_test = sc_X.transform(X_test)
22
sc_y = StandardScaler()
23
y_train = sc_y.fit_transform(y_train)"""
24