Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
debakarr
GitHub Repository: debakarr/machinelearning
Path: blob/master/Part 1 - Data Preprocessing/missing_data.py
1002 views
1
# Data Preprocessing
2
3
# Importing the libraries
4
import numpy as np
5
import matplotlib.pyplot as plt
6
import pandas as pd
7
8
# Importing the dataset
9
dataset = pd.read_csv('Data.csv')
10
X = dataset.iloc[:, :-1].values
11
y = dataset.iloc[:, 3].values
12
13
# Taking care of missing data
14
from sklearn.preprocessing import Imputer
15
imputer = Imputer(missing_values = 'NaN', strategy = 'mean', axis = 0)
16
imputer = imputer.fit(X[:, 1:3])
17
X[:, 1:3] = imputer.transform(X[:, 1:3])
18