Path: blob/master/Part 10 - Model Selection And Boosting/XGBoost/xgboost.R
1341 views
# XGBoost12# Importing the dataset3dataset = read.csv('Churn_Modelling.csv')4dataset = dataset[4:14]56# Encoding the categorical variables as factors7dataset$Geography = as.numeric(factor(dataset$Geography,8levels = c('France', 'Spain', 'Germany'),9labels = c(1, 2, 3)))10dataset$Gender = as.numeric(factor(dataset$Gender,11levels = c('Female', 'Male'),12labels = c(1, 2)))1314# Splitting the dataset into the Training set and Test set15# install.packages('caTools')16library(caTools)17set.seed(123)18split = sample.split(dataset$Exited, SplitRatio = 0.8)19training_set = subset(dataset, split == TRUE)20test_set = subset(dataset, split == FALSE)2122# Fitting XGBoost to the Training set23# install.packages('xgboost')24library(xgboost)25classifier = xgboost(data = as.matrix(training_set[-11]), label = training_set$Exited, nrounds = 10)2627# Predicting the Test set results28y_pred = predict(classifier, newdata = as.matrix(test_set[-11]))29y_pred = (y_pred >= 0.5)3031# Making the Confusion Matrix32cm = table(test_set[, 11], y_pred)3334# Applying k-Fold Cross Validation35# install.packages('caret')36library(caret)37folds = createFolds(training_set$Exited, k = 10)38cv = lapply(folds, function(x) {39training_fold = training_set[-x, ]40test_fold = training_set[x, ]41classifier = xgboost(data = as.matrix(training_set[-11]), label = training_set$Exited, nrounds = 10)42y_pred = predict(classifier, newdata = as.matrix(test_fold[-11]))43y_pred = (y_pred >= 0.5)44cm = table(test_fold[, 11], y_pred)45accuracy = (cm[1,1] + cm[2,2]) / (cm[1,1] + cm[2,2] + cm[1,2] + cm[2,1])46return(accuracy)47})48accuracy = mean(as.numeric(cv))4950