Path: blob/master/Part 2 - Regression/Decision Tree Regression/regression_template.R
1009 views
# Regression Template12# Importing the dataset3dataset = read.csv('Position_Salaries.csv')4dataset = dataset[2:3]56# Splitting the dataset into the Training set and Test set7# # install.packages('caTools')8# library(caTools)9# set.seed(123)10# split = sample.split(dataset$Salary, SplitRatio = 2/3)11# training_set = subset(dataset, split == TRUE)12# test_set = subset(dataset, split == FALSE)1314# Feature Scaling15# training_set = scale(training_set)16# test_set = scale(test_set)1718# Fitting the Regression Model to the dataset19# Create your regressor here2021# Predicting a new result22y_pred = predict(regressor, data.frame(Level = 6.5))2324# Visualising the Regression Model results25# install.packages('ggplot2')26library(ggplot2)27ggplot() +28geom_point(aes(x = dataset$Level, y = dataset$Salary),29colour = 'red') +30geom_line(aes(x = dataset$Level, y = predict(regressor, newdata = dataset)),31colour = 'blue') +32ggtitle('Truth or Bluff (Regression Model)') +33xlab('Level') +34ylab('Salary')3536# Visualising the Regression Model results (for higher resolution and smoother curve)37# install.packages('ggplot2')38library(ggplot2)39x_grid = seq(min(dataset$Level), max(dataset$Level), 0.1)40ggplot() +41geom_point(aes(x = dataset$Level, y = dataset$Salary),42colour = 'red') +43geom_line(aes(x = x_grid, y = predict(regressor, newdata = data.frame(Level = x_grid))),44colour = 'blue') +45ggtitle('Truth or Bluff (Regression Model)') +46xlab('Level') +47ylab('Salary')4849