Path: blob/master/Part 2 - Regression/Random Forest Regression/random_forest_regression.R
1009 views
# Random Forest Regression12# Importing the dataset3dataset = read.csv('Position_Salaries.csv')4dataset = dataset[2:3]56# Splitting the dataset into the Training set and Test set7# # install.packages('caTools')8# library(caTools)9# set.seed(123)10# split = sample.split(dataset$Salary, SplitRatio = 2/3)11# training_set = subset(dataset, split == TRUE)12# test_set = subset(dataset, split == FALSE)1314# Feature Scaling15# training_set = scale(training_set)16# test_set = scale(test_set)1718# Fitting Random Forest Regression to the dataset19# install.packages('randomForest')20library(randomForest)21set.seed(1234)22regressor = randomForest(x = dataset[-2],23y = dataset$Salary,24ntree = 500)2526# Predicting a new result with Random Forest Regression27y_pred = predict(regressor, data.frame(Level = 6.5))2829# Visualising the Random Forest Regression results (higher resolution)30# install.packages('ggplot2')31library(ggplot2)32x_grid = seq(min(dataset$Level), max(dataset$Level), 0.01)33ggplot() +34geom_point(aes(x = dataset$Level, y = dataset$Salary),35colour = 'red') +36geom_line(aes(x = x_grid, y = predict(regressor, newdata = data.frame(Level = x_grid))),37colour = 'blue') +38ggtitle('Truth or Bluff (Random Forest Regression)') +39xlab('Level') +40ylab('Salary')4142