Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
debakarr
GitHub Repository: debakarr/machinelearning
Path: blob/master/Part 2 - Regression/Random Forest Regression/random_forest_regression.R
1009 views
1
# Random Forest Regression
2
3
# Importing the dataset
4
dataset = read.csv('Position_Salaries.csv')
5
dataset = dataset[2:3]
6
7
# Splitting the dataset into the Training set and Test set
8
# # install.packages('caTools')
9
# library(caTools)
10
# set.seed(123)
11
# split = sample.split(dataset$Salary, SplitRatio = 2/3)
12
# training_set = subset(dataset, split == TRUE)
13
# test_set = subset(dataset, split == FALSE)
14
15
# Feature Scaling
16
# training_set = scale(training_set)
17
# test_set = scale(test_set)
18
19
# Fitting Random Forest Regression to the dataset
20
# install.packages('randomForest')
21
library(randomForest)
22
set.seed(1234)
23
regressor = randomForest(x = dataset[-2],
24
y = dataset$Salary,
25
ntree = 500)
26
27
# Predicting a new result with Random Forest Regression
28
y_pred = predict(regressor, data.frame(Level = 6.5))
29
30
# Visualising the Random Forest Regression results (higher resolution)
31
# install.packages('ggplot2')
32
library(ggplot2)
33
x_grid = seq(min(dataset$Level), max(dataset$Level), 0.01)
34
ggplot() +
35
geom_point(aes(x = dataset$Level, y = dataset$Salary),
36
colour = 'red') +
37
geom_line(aes(x = x_grid, y = predict(regressor, newdata = data.frame(Level = x_grid))),
38
colour = 'blue') +
39
ggtitle('Truth or Bluff (Random Forest Regression)') +
40
xlab('Level') +
41
ylab('Salary')
42