Path: blob/master/Part 2 - Regression/Random Forest Regression/random_forest_regression.py
1009 views
# Random Forest Regression12# Importing the libraries3import numpy as np4import matplotlib.pyplot as plt5import pandas as pd67# Importing the dataset8dataset = pd.read_csv('Position_Salaries.csv')9X = dataset.iloc[:, 1:2].values10y = dataset.iloc[:, 2].values1112# Splitting the dataset into the Training set and Test set13"""from sklearn.cross_validation import train_test_split14X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 0)"""1516# Feature Scaling17"""from sklearn.preprocessing import StandardScaler18sc_X = StandardScaler()19X_train = sc_X.fit_transform(X_train)20X_test = sc_X.transform(X_test)21sc_y = StandardScaler()22y_train = sc_y.fit_transform(y_train)"""2324# Fitting Random Forest Regression to the dataset25from sklearn.ensemble import RandomForestRegressor26regressor = RandomForestRegressor(n_estimators = 10, random_state = 0)27regressor.fit(X, y)2829# Predicting a new result30y_pred = regressor.predict(6.5)3132# Visualising the Random Forest Regression results (higher resolution)33X_grid = np.arange(min(X), max(X), 0.01)34X_grid = X_grid.reshape((len(X_grid), 1))35plt.scatter(X, y, color = 'red')36plt.plot(X_grid, regressor.predict(X_grid), color = 'blue')37plt.title('Truth or Bluff (Random Forest Regression)')38plt.xlabel('Position level')39plt.ylabel('Salary')40plt.show()4142