Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
debakarr
GitHub Repository: debakarr/machinelearning
Path: blob/master/Part 2 - Regression/Random Forest Regression/regression_template.R
1009 views
1
# Regression Template
2
3
# Importing the dataset
4
dataset = read.csv('Position_Salaries.csv')
5
dataset = dataset[2:3]
6
7
# Splitting the dataset into the Training set and Test set
8
# # install.packages('caTools')
9
# library(caTools)
10
# set.seed(123)
11
# split = sample.split(dataset$Salary, SplitRatio = 2/3)
12
# training_set = subset(dataset, split == TRUE)
13
# test_set = subset(dataset, split == FALSE)
14
15
# Feature Scaling
16
# training_set = scale(training_set)
17
# test_set = scale(test_set)
18
19
# Fitting the Regression Model to the dataset
20
# Create your regressor here
21
22
# Predicting a new result
23
y_pred = predict(regressor, data.frame(Level = 6.5))
24
25
# Visualising the Regression Model results
26
# install.packages('ggplot2')
27
library(ggplot2)
28
ggplot() +
29
geom_point(aes(x = dataset$Level, y = dataset$Salary),
30
colour = 'red') +
31
geom_line(aes(x = dataset$Level, y = predict(regressor, newdata = dataset)),
32
colour = 'blue') +
33
ggtitle('Truth or Bluff (Regression Model)') +
34
xlab('Level') +
35
ylab('Salary')
36
37
# Visualising the Regression Model results (for higher resolution and smoother curve)
38
# install.packages('ggplot2')
39
library(ggplot2)
40
x_grid = seq(min(dataset$Level), max(dataset$Level), 0.1)
41
ggplot() +
42
geom_point(aes(x = dataset$Level, y = dataset$Salary),
43
colour = 'red') +
44
geom_line(aes(x = x_grid, y = predict(regressor, newdata = data.frame(Level = x_grid))),
45
colour = 'blue') +
46
ggtitle('Truth or Bluff (Regression Model)') +
47
xlab('Level') +
48
ylab('Salary')
49