Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
debakarr
GitHub Repository: debakarr/machinelearning
Path: blob/master/Part 2 - Regression/Simple Linear Regression/simple_linear_regression.R
1009 views
1
# Simple Linear Regression
2
3
# Importing the dataset
4
dataset = read.csv('Salary_Data.csv')
5
6
# Splitting the dataset into the Training set and Test set
7
# install.packages('caTools')
8
library(caTools)
9
set.seed(123)
10
split = sample.split(dataset$Salary, SplitRatio = 2/3)
11
training_set = subset(dataset, split == TRUE)
12
test_set = subset(dataset, split == FALSE)
13
14
# Feature Scaling
15
# training_set = scale(training_set)
16
# test_set = scale(test_set)
17
18
# Fitting Simple Linear Regression to the Training set
19
regressor = lm(formula = Salary ~ YearsExperience,
20
data = training_set)
21
22
# Predicting the Test set results
23
y_pred = predict(regressor, newdata = test_set)
24
25
# Visualising the Training set results
26
library(ggplot2)
27
ggplot() +
28
geom_point(aes(x = training_set$YearsExperience, y = training_set$Salary),
29
colour = 'red') +
30
geom_line(aes(x = training_set$YearsExperience, y = predict(regressor, newdata = training_set)),
31
colour = 'blue') +
32
ggtitle('Salary vs Experience (Training set)') +
33
xlab('Years of experience') +
34
ylab('Salary')
35
36
# Visualising the Test set results
37
library(ggplot2)
38
ggplot() +
39
geom_point(aes(x = test_set$YearsExperience, y = test_set$Salary),
40
colour = 'red') +
41
geom_line(aes(x = training_set$YearsExperience, y = predict(regressor, newdata = training_set)),
42
colour = 'blue') +
43
ggtitle('Salary vs Experience (Test set)') +
44
xlab('Years of experience') +
45
ylab('Salary')
46