Path: blob/master/Part 2 - Regression/Support Vector Regression (SVR)/svr.R
1009 views
# SVR12# Importing the dataset3dataset = read.csv('Position_Salaries.csv')4dataset = dataset[2:3]56# Splitting the dataset into the Training set and Test set7# # install.packages('caTools')8# library(caTools)9# set.seed(123)10# split = sample.split(dataset$Salary, SplitRatio = 2/3)11# training_set = subset(dataset, split == TRUE)12# test_set = subset(dataset, split == FALSE)1314# Feature Scaling15# training_set = scale(training_set)16# test_set = scale(test_set)1718# Fitting SVR to the dataset19# install.packages('e1071')20library(e1071)21regressor = svm(formula = Salary ~ .,22data = dataset,23type = 'eps-regression',24kernel = 'radial')2526# Predicting a new result27y_pred = predict(regressor, data.frame(Level = 6.5))2829# Visualising the SVR results30# install.packages('ggplot2')31library(ggplot2)32ggplot() +33geom_point(aes(x = dataset$Level, y = dataset$Salary),34colour = 'red') +35geom_line(aes(x = dataset$Level, y = predict(regressor, newdata = dataset)),36colour = 'blue') +37ggtitle('Truth or Bluff (SVR)') +38xlab('Level') +39ylab('Salary')4041# Visualising the SVR results (for higher resolution and smoother curve)42# install.packages('ggplot2')43library(ggplot2)44x_grid = seq(min(dataset$Level), max(dataset$Level), 0.1)45ggplot() +46geom_point(aes(x = dataset$Level, y = dataset$Salary),47colour = 'red') +48geom_line(aes(x = x_grid, y = predict(regressor, newdata = data.frame(Level = x_grid))),49colour = 'blue') +50ggtitle('Truth or Bluff (SVR)') +51xlab('Level') +52ylab('Salary')5354