Path: blob/master/Part 3 - Classification/Decision Tree/decision_tree_classification.R
1009 views
# Decision Tree Classification12# Importing the dataset3dataset = read.csv('Social_Network_Ads.csv')4dataset = dataset[3:5]56# Encoding the target feature as factor7dataset$Purchased = factor(dataset$Purchased, levels = c(0, 1))89# Splitting the dataset into the Training set and Test set10# install.packages('caTools')11library(caTools)12set.seed(123)13split = sample.split(dataset$Purchased, SplitRatio = 0.75)14training_set = subset(dataset, split == TRUE)15test_set = subset(dataset, split == FALSE)1617# Feature Scaling18training_set[-3] = scale(training_set[-3])19test_set[-3] = scale(test_set[-3])2021# Fitting Decision Tree Classification to the Training set22# install.packages('rpart')23library(rpart)24classifier = rpart(formula = Purchased ~ .,25data = training_set)2627# Predicting the Test set results28y_pred = predict(classifier, newdata = test_set[-3], type = 'class')2930# Making the Confusion Matrix31cm = table(test_set[, 3], y_pred)3233# Visualising the Training set results34library(ElemStatLearn)35set = training_set36X1 = seq(min(set[, 1]) - 1, max(set[, 1]) + 1, by = 0.01)37X2 = seq(min(set[, 2]) - 1, max(set[, 2]) + 1, by = 0.01)38grid_set = expand.grid(X1, X2)39colnames(grid_set) = c('Age', 'EstimatedSalary')40y_grid = predict(classifier, newdata = grid_set, type = 'class')41plot(set[, -3],42main = 'Decision Tree Classification (Training set)',43xlab = 'Age', ylab = 'Estimated Salary',44xlim = range(X1), ylim = range(X2))45contour(X1, X2, matrix(as.numeric(y_grid), length(X1), length(X2)), add = TRUE)46points(grid_set, pch = '.', col = ifelse(y_grid == 1, 'springgreen3', 'tomato'))47points(set, pch = 21, bg = ifelse(set[, 3] == 1, 'green4', 'red3'))4849# Visualising the Test set results50library(ElemStatLearn)51set = test_set52X1 = seq(min(set[, 1]) - 1, max(set[, 1]) + 1, by = 0.01)53X2 = seq(min(set[, 2]) - 1, max(set[, 2]) + 1, by = 0.01)54grid_set = expand.grid(X1, X2)55colnames(grid_set) = c('Age', 'EstimatedSalary')56y_grid = predict(classifier, newdata = grid_set, type = 'class')57plot(set[, -3], main = 'Decision Tree Classification (Test set)',58xlab = 'Age', ylab = 'Estimated Salary',59xlim = range(X1), ylim = range(X2))60contour(X1, X2, matrix(as.numeric(y_grid), length(X1), length(X2)), add = TRUE)61points(grid_set, pch = '.', col = ifelse(y_grid == 1, 'springgreen3', 'tomato'))62points(set, pch = 21, bg = ifelse(set[, 3] == 1, 'green4', 'red3'))6364# Plotting the tree65plot(classifier)66text(classifier)6768