Path: blob/master/Part 3 - Classification/Logistic Regression/logistic_regression.R
1009 views
# Logistic Regression12# Importing the dataset3dataset = read.csv('Social_Network_Ads.csv')4dataset = dataset[3:5]56# Encoding the target feature as factor7dataset$Purchased = factor(dataset$Purchased, levels = c(0, 1))89# Splitting the dataset into the Training set and Test set10# install.packages('caTools')11library(caTools)12set.seed(123)13split = sample.split(dataset$Purchased, SplitRatio = 0.75)14training_set = subset(dataset, split == TRUE)15test_set = subset(dataset, split == FALSE)1617# Feature Scaling18training_set[-3] = scale(training_set[-3])19test_set[-3] = scale(test_set[-3])2021# Fitting Logistic Regression to the Training set22classifier = glm(formula = Purchased ~ .,23family = binomial,24data = training_set)2526# Predicting the Test set results27prob_pred = predict(classifier, type = 'response', newdata = test_set[-3])28y_pred = ifelse(prob_pred > 0.5, 1, 0)2930# Making the Confusion Matrix31cm = table(test_set[, 3], y_pred > 0.5)3233# Visualising the Training set results34library(ElemStatLearn)35set = training_set36X1 = seq(min(set[, 1]) - 1, max(set[, 1]) + 1, by = 0.01)37X2 = seq(min(set[, 2]) - 1, max(set[, 2]) + 1, by = 0.01)38grid_set = expand.grid(X1, X2)39colnames(grid_set) = c('Age', 'EstimatedSalary')40prob_set = predict(classifier, type = 'response', newdata = grid_set)41y_grid = ifelse(prob_set > 0.5, 1, 0)42plot(set[, -3],43main = 'Logistic Regression (Training set)',44xlab = 'Age', ylab = 'Estimated Salary',45xlim = range(X1), ylim = range(X2))46contour(X1, X2, matrix(as.numeric(y_grid), length(X1), length(X2)), add = TRUE)47points(grid_set, pch = '.', col = ifelse(y_grid == 1, 'springgreen3', 'tomato'))48points(set, pch = 21, bg = ifelse(set[, 3] == 1, 'green4', 'red3'))4950# Visualising the Test set results51library(ElemStatLearn)52set = test_set53X1 = seq(min(set[, 1]) - 1, max(set[, 1]) + 1, by = 0.01)54X2 = seq(min(set[, 2]) - 1, max(set[, 2]) + 1, by = 0.01)55grid_set = expand.grid(X1, X2)56colnames(grid_set) = c('Age', 'EstimatedSalary')57prob_set = predict(classifier, type = 'response', newdata = grid_set)58y_grid = ifelse(prob_set > 0.5, 1, 0)59plot(set[, -3],60main = 'Logistic Regression (Test set)',61xlab = 'Age', ylab = 'Estimated Salary',62xlim = range(X1), ylim = range(X2))63contour(X1, X2, matrix(as.numeric(y_grid), length(X1), length(X2)), add = TRUE)64points(grid_set, pch = '.', col = ifelse(y_grid == 1, 'springgreen3', 'tomato'))65points(set, pch = 21, bg = ifelse(set[, 3] == 1, 'green4', 'red3'))6667