Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
debakarr
GitHub Repository: debakarr/machinelearning
Path: blob/master/Part 5 - Association Rule Learning/Eclat/eclat.R
1339 views
1
# Eclat
2
3
# Data Preprocessing
4
# install.packages('arules')
5
library(arules)
6
dataset = read.csv('Market_Basket_Optimisation.csv')
7
dataset = read.transactions('Market_Basket_Optimisation.csv', sep = ',', rm.duplicates = TRUE)
8
summary(dataset)
9
itemFrequencyPlot(dataset, topN = 10)
10
11
# Training Eclat on the dataset
12
rules = eclat(data = dataset, parameter = list(support = 0.003, minlen = 2))
13
14
# Visualising the results
15
inspect(sort(rules, by = 'support')[1:10])
16