Path: blob/master/CNN/lab-10-2-mnist_nn.py
618 views
# Lab 10 MNIST and softmax1import torch2import torchvision.datasets as dsets3import torchvision.transforms as transforms4import random56device = 'cuda' if torch.cuda.is_available() else 'cpu'78# for reproducibility9random.seed(777)10torch.manual_seed(777)11if device == 'cuda':12torch.cuda.manual_seed_all(777)1314# parameters15learning_rate = 0.00116training_epochs = 1517batch_size = 1001819# MNIST dataset20mnist_train = dsets.MNIST(root='MNIST_data/',21train=True,22transform=transforms.ToTensor(),23download=True)2425mnist_test = dsets.MNIST(root='MNIST_data/',26train=False,27transform=transforms.ToTensor(),28download=True)2930# dataset loader31data_loader = torch.utils.data.DataLoader(dataset=mnist_train,32batch_size=batch_size,33shuffle=True,34drop_last=True)3536# nn layers37linear1 = torch.nn.Linear(784, 256, bias=True)38linear2 = torch.nn.Linear(256, 256, bias=True)39linear3 = torch.nn.Linear(256, 10, bias=True)40relu = torch.nn.ReLU()4142# model43model = torch.nn.Sequential(linear1, relu, linear2, relu, linear3).to(device)4445# define cost/loss & optimizer46criterion = torch.nn.CrossEntropyLoss().to(device) # Softmax is internally computed.47optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)4849total_batch = len(data_loader)50for epoch in range(training_epochs):51avg_cost = 05253for X, Y in data_loader:54# reshape input image into [batch_size by 784]55# label is not one-hot encoded56X = X.view(-1, 28 * 28).to(device)57Y = Y.to(device)5859optimizer.zero_grad()60hypothesis = model(X)61cost = criterion(hypothesis, Y)62cost.backward()63optimizer.step()6465avg_cost += cost / total_batch6667print('Epoch:', '%04d' % (epoch + 1), 'cost =', '{:.9f}'.format(avg_cost))6869print('Learning finished')7071# Test the model using test sets72with torch.no_grad():73X_test = mnist_test.test_data.view(-1, 28 * 28).float().to(device)74Y_test = mnist_test.test_labels.to(device)7576prediction = model(X_test)77correct_prediction = torch.argmax(prediction, 1) == Y_test78accuracy = correct_prediction.float().mean()79print('Accuracy:', accuracy.item())8081# Get one and predict82r = random.randint(0, len(mnist_test) - 1)83X_single_data = mnist_test.test_data[r:r + 1].view(-1, 28 * 28).float().to(device)84Y_single_data = mnist_test.test_labels[r:r + 1].to(device)8586print('Label: ', Y_single_data.item())87single_prediction = model(X_single_data)88print('Prediction: ', torch.argmax(single_prediction, 1).item())8990