Path: blob/master/CNN/lab-10-3-mnist_nn_xavier.ipynb
630 views
Kernel: Python 3
In [1]:
In [2]:
In [3]:
In [4]:
In [5]:
In [6]:
In [7]:
Out[7]:
Parameter containing:
tensor([[-0.0215, -0.0894, 0.0598, ..., 0.0200, 0.0203, 0.1212],
[ 0.0078, 0.1378, 0.0920, ..., 0.0975, 0.1458, -0.0302],
[ 0.1270, -0.1296, 0.1049, ..., 0.0124, 0.1173, -0.0901],
...,
[ 0.0661, -0.1025, 0.1437, ..., 0.0784, 0.0977, -0.0396],
[ 0.0430, -0.1274, -0.0134, ..., -0.0582, 0.1201, 0.1479],
[-0.1433, 0.0200, -0.0568, ..., 0.0787, 0.0428, -0.0036]],
requires_grad=True)
In [8]:
In [9]:
In [10]:
Out[10]:
Epoch: 0001 cost = 0.249897048
Epoch: 0002 cost = 0.094330102
Epoch: 0003 cost = 0.061055195
Epoch: 0004 cost = 0.042816643
Epoch: 0005 cost = 0.032796543
Epoch: 0006 cost = 0.024419624
Epoch: 0007 cost = 0.020511184
Epoch: 0008 cost = 0.018132176
Epoch: 0009 cost = 0.015536907
Epoch: 0010 cost = 0.016846467
Epoch: 0011 cost = 0.012203062
Epoch: 0012 cost = 0.012871196
Epoch: 0013 cost = 0.011348661
Epoch: 0014 cost = 0.010990168
Epoch: 0015 cost = 0.006201488
Learning finished
In [11]:
Out[11]:
Accuracy: 0.9804999828338623
Label: 8
Prediction: 8