Path: blob/master/CNN/lab-10-4-mnist_nn_deep.ipynb
618 views
Kernel: Python 3
In [1]:
In [2]:
In [3]:
In [4]:
In [5]:
In [6]:
In [7]:
Out[7]:
Parameter containing:
tensor([[-0.0565, 0.0423, -0.0155, ..., 0.1012, 0.0459, -0.0191],
[ 0.0772, 0.0452, -0.0638, ..., 0.0476, -0.0638, 0.0528],
[ 0.0311, -0.1023, -0.0701, ..., 0.0412, -0.1004, 0.0738],
...,
[ 0.0334, 0.0187, -0.1021, ..., 0.0280, -0.0583, -0.1018],
[-0.0506, -0.0939, -0.0467, ..., -0.0554, -0.0325, 0.0640],
[-0.0183, -0.0123, 0.1025, ..., -0.0214, 0.0220, -0.0741]],
requires_grad=True)
In [8]:
In [9]:
In [10]:
Out[10]:
Epoch: 0001 cost = 0.283860594
Epoch: 0002 cost = 0.089265838
Epoch: 0003 cost = 0.056718789
Epoch: 0004 cost = 0.041850876
Epoch: 0005 cost = 0.030926639
Epoch: 0006 cost = 0.024389934
Epoch: 0007 cost = 0.021937676
Epoch: 0008 cost = 0.019161038
Epoch: 0009 cost = 0.016852187
Epoch: 0010 cost = 0.014415207
Epoch: 0011 cost = 0.013022121
Epoch: 0012 cost = 0.010289547
Epoch: 0013 cost = 0.015175694
Epoch: 0014 cost = 0.008412631
Epoch: 0015 cost = 0.008151450
Learning finished
In [11]:
Out[11]:
Accuracy: 0.9818999767303467
Label: 8
Prediction: 8