Path: blob/master/CNN/lab-10-4-mnist_nn_deep.py
618 views
# Lab 10 MNIST and softmax1import torch2import torchvision.datasets as dsets3import torchvision.transforms as transforms4import random56device = 'cuda' if torch.cuda.is_available() else 'cpu'78# for reproducibility9random.seed(777)10torch.manual_seed(777)11if device == 'cuda':12torch.cuda.manual_seed_all(777)1314# parameters15learning_rate = 0.00116training_epochs = 1517batch_size = 1001819# MNIST dataset20mnist_train = dsets.MNIST(root='MNIST_data/',21train=True,22transform=transforms.ToTensor(),23download=True)2425mnist_test = dsets.MNIST(root='MNIST_data/',26train=False,27transform=transforms.ToTensor(),28download=True)2930# dataset loader31data_loader = torch.utils.data.DataLoader(dataset=mnist_train,32batch_size=batch_size,33shuffle=True,34drop_last=True)3536# nn layers37linear1 = torch.nn.Linear(784, 512, bias=True)38linear2 = torch.nn.Linear(512, 512, bias=True)39linear3 = torch.nn.Linear(512, 512, bias=True)40linear4 = torch.nn.Linear(512, 512, bias=True)41linear5 = torch.nn.Linear(512, 10, bias=True)42relu = torch.nn.ReLU()4344# xavier initialization45torch.nn.init.xavier_uniform_(linear1.weight)46torch.nn.init.xavier_uniform_(linear2.weight)47torch.nn.init.xavier_uniform_(linear3.weight)48torch.nn.init.xavier_uniform_(linear4.weight)49torch.nn.init.xavier_uniform_(linear5.weight)5051# model52model = torch.nn.Sequential(linear1, relu, linear2, relu, linear3).to(device)5354# define cost/loss & optimizer55criterion = torch.nn.CrossEntropyLoss().to(device) # Softmax is internally computed.56optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)5758total_batch = len(data_loader)59for epoch in range(training_epochs):60avg_cost = 06162for X, Y in data_loader:63# reshape input image into [batch_size by 784]64# label is not one-hot encoded65X = X.view(-1, 28 * 28).to(device)66Y = Y.to(device)6768optimizer.zero_grad()69hypothesis = model(X)70cost = criterion(hypothesis, Y)71cost.backward()72optimizer.step()7374avg_cost += cost / total_batch7576print('Epoch:', '%04d' % (epoch + 1), 'cost =', '{:.9f}'.format(avg_cost))7778print('Learning finished')7980# Test the model using test sets81with torch.no_grad():82X_test = mnist_test.test_data.view(-1, 28 * 28).float().to(device)83Y_test = mnist_test.test_labels.to(device)8485prediction = model(X_test)86correct_prediction = torch.argmax(prediction, 1) == Y_test87accuracy = correct_prediction.float().mean()88print('Accuracy:', accuracy.item())8990# Get one and predict91r = random.randint(0, len(mnist_test) - 1)92X_single_data = mnist_test.test_data[r:r + 1].view(-1, 28 * 28).float().to(device)93Y_single_data = mnist_test.test_labels[r:r + 1].to(device)9495print('Label: ', Y_single_data.item())96single_prediction = model(X_single_data)97print('Prediction: ', torch.argmax(single_prediction, 1).item())9899