Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
dynamicslab
GitHub Repository: dynamicslab/databook_python
Path: blob/master/CH01/CH01_SEC04_2_Cement.ipynb
597 views
Kernel: Python 3
import matplotlib.pyplot as plt import numpy as np import os plt.rcParams['figure.figsize'] = [8, 8] plt.rcParams.update({'font.size': 18}) # Load dataset A = np.loadtxt(os.path.join('..','DATA','hald_ingredients.csv'),delimiter=',') b = np.loadtxt(os.path.join('..','DATA','hald_heat.csv'),delimiter=',') # Solve Ax=b using SVD U, S, VT = np.linalg.svd(A,full_matrices=0) x = VT.T @ np.linalg.inv(np.diag(S)) @ U.T @ b plt.plot(b, color='k', linewidth=2, label='Heat Data') # True relationship plt.plot(A@x, '-o', color='r', linewidth=1.5, markersize=6, label='Regression') plt.legend() plt.show()
Image in a Jupyter notebook
# Alternative Methods: # The first alternative is specific to Matlab: # x = regress(b,A) # Alternative 2: x = np.linalg.pinv(A)@b