Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
dynamicslab
GitHub Repository: dynamicslab/databook_python
Path: blob/master/CH02/CH02_SEC06_4_Wavelet.ipynb
597 views
Kernel: Python 3
# Using the PyWavelets module, available at # https://pywavelets.readthedocs.io/en/latest/install.html from matplotlib.image import imread import numpy as np import matplotlib.pyplot as plt import os import pywt plt.rcParams['figure.figsize'] = [16, 16] plt.rcParams.update({'font.size': 18}) A = imread(os.path.join('..','DATA','dog.jpg')) B = np.mean(A, -1); # Convert RGB to grayscale
## Wavelet decomposition (2 level) n = 2 w = 'db1' coeffs = pywt.wavedec2(B,wavelet=w,level=n) # normalize each coefficient array coeffs[0] /= np.abs(coeffs[0]).max() for detail_level in range(n): coeffs[detail_level + 1] = [d/np.abs(d).max() for d in coeffs[detail_level + 1]] arr, coeff_slices = pywt.coeffs_to_array(coeffs) plt.imshow(arr,cmap='gray',vmin=-0.25,vmax=0.75) plt.show()
Image in a Jupyter notebook