startval = 1
endval = 4
xvals = np.array([[],[]])
n_iter = 1000
n_plot = 100
def logistic(xk,r):
return r*xk*(1-xk)
for r in np.arange(startval,endval,0.00025):
x = 0.5
for i in range(n_iter):
x = logistic(x,r)
if i == n_iter-n_plot:
xss = x
if i > n_iter-n_plot:
xvals = np.append(xvals,np.array([[r],[x]]),axis=1)
if np.abs(x-xss) < 0.001:
break