"""
This script is based on the script from David Eppstein, UC Irvine.
This script is to find the shortest path from the given origin 'start' to the other nodes in the investigated network.
The Dijkstra algorithm is used for searching the respective shortest paths.
the link information about the shortest paths and the corresponding travel times
will be stored in the lists P and D respectively.
"""
import os
import sys
from collections import defaultdict
from xml.sax import make_parser, handler
sys.path.append(os.path.join(os.path.dirname(__file__), '..'))
from sumolib.net import readNet
class priorityDictionary(dict):
def __init__(self):
'''Initialize priorityDictionary by creating binary heap
of pairs (value,key). Note that changing or removing a dict entry will
not remove the old pair from the heap until it is found by smallest() or
until the heap is rebuilt.'''
self.__heap = []
dict.__init__(self)
def smallest(self):
'''Find smallest item after removing deleted items from heap.'''
if len(self) == 0:
raise IndexError("smallest of empty priorityDictionary")
heap = self.__heap
while heap[0][1] not in self or self[heap[0][1]] != heap[0][0]:
lastItem = heap.pop()
insertionPoint = 0
while 1:
smallChild = 2 * insertionPoint + 1
if smallChild + 1 < len(heap) and \
heap[smallChild][0] > heap[smallChild + 1][0]:
smallChild += 1
if smallChild >= len(heap) or lastItem <= heap[smallChild]:
heap[insertionPoint] = lastItem
break
heap[insertionPoint] = heap[smallChild]
insertionPoint = smallChild
return heap[0][1]
def __iter__(self):
'''Create destructive sorted iterator of priorityDictionary.'''
def iterfn():
while len(self) > 0:
x = self.smallest()
yield x
del self[x]
return iterfn()
def __setitem__(self, key, val):
'''Change value stored in dictionary and add corresponding
pair to heap. Rebuilds the heap if the number of deleted items grows
too large, to avoid memory leakage.'''
dict.__setitem__(self, key, val)
heap = self.__heap
if len(heap) > 2 * len(self):
self.__heap = [(v, k) for k, v in self.items()]
self.__heap.sort()
else:
newPair = (val, key)
insertionPoint = len(heap)
heap.append(None)
while insertionPoint > 0 and val < heap[(insertionPoint - 1) // 2][0]:
heap[insertionPoint] = heap[(insertionPoint - 1) // 2]
insertionPoint = (insertionPoint - 1) // 2
heap[insertionPoint] = newPair
def setdefault(self, key, val):
'''Reimplement setdefault to call our customized __setitem__.'''
if key not in self:
self[key] = val
return self[key]
def update(self, other):
for key in other.keys():
self[key] = other[key]
def dijkstra(start, targets):
D = {}
P = {}
Q = priorityDictionary()
Q[start] = 0
for v in Q:
D[v] = Q[v]
if targets.discard(v):
if len(targets) == 0:
return (D, P)
isConflictCandidate = (v != start) and (P[v].conflictlink is not None)
for edge in v.outEdges:
w = edge.target
vwLength = D[v] + edge.helpacttime
if isConflictCandidate:
if (edge.kind == "junction" and iter(edge.target.outEdges).next() in P[v].leftlink) or\
(edge.kind != "junction" and edge in P[v].leftlink):
vwLength += P[v].penalty
if w not in D and (w not in Q or vwLength < Q[w]):
Q[w] = vwLength
P[w] = edge
return (D, P)
def dijkstraPlain(start, targets):
D = {}
P = {}
Q = priorityDictionary()
Q[start] = 0
for v in Q:
D[v] = Q[v]
if targets.discard(v):
if len(targets) == 0:
return (D, P)
for edge in v.getOutgoing():
w = edge._to
vwLength = D[v] + edge.helpacttime
if w not in D and (w not in Q or vwLength < Q[w]):
Q[w] = vwLength
P[w] = edge
return (D, P)
def dijkstraBoost(boostGraph, start):
from boost.graph import dijkstra_shortest_paths
dijkstra_shortest_paths(boostGraph, start,
distance_map=boostGraph.vertex_properties[
'distance'],
predecessor_map=boostGraph.vertex_properties[
'predecessor'],
weight_map=boostGraph.edge_properties['weight'])
D = {}
P = {}
for v in boostGraph.vertices:
D[v.partner] = v.distance
for edge in v.partner.inEdges:
if edge.source == v.predecessor.partner:
P[v.partner] = edge
break
return (D, P)
class DijkstraRouter(handler.ContentHandler):
"""standalone class for routing on a sumolib network.
The edges from the network receive new attribute 'cost' based on
a loaded meanData output
"""
def __init__(self, netfile, weightfile=None):
self.net = readNet(netfile)
self.cost_attribute = 'traveltime'
self.weightfile = weightfile
if self.weightfile is not None:
self.load_weights(self.weightfile)
def load_weights(self, weightfile):
for e in self.net.getEdges():
e.cost = e.getLength() / e.getSpeed()
self.weightfile = weightfile
self.intervals = 0
parser = make_parser()
parser.setContentHandler(self)
parser.parse(weightfile)
def startElement(self, name, attrs):
if name == 'interval':
self.intervals += 1
if self.intervals > 1:
print("ignoring weights from interval [%s,%s]" % (
attrs['begin'], attrs['end']))
if name == 'edge':
if self.intervals > 1:
return
if self.cost_attribute in attrs:
self.net.getEdge(attrs['id']).cost = float(
attrs[self.cost_attribute])
def _route(self, start, dest, costFactors):
if self.weightfile is None:
raise Exception("not weights loaded")
D = {}
P = {}
Q = priorityDictionary()
Q[start] = 0
for edge in Q:
D[edge] = Q[edge]
if edge == dest:
return (D, P)
cost = Q[edge] + edge.cost * costFactors[edge.getID()]
for succ in edge.getOutgoing():
if succ not in Q or Q[succ] > cost:
Q[succ] = cost
P[succ] = edge
return (D, P)
def _getEdge(self, *ids):
"""retrieves edge objects based on their ids"""
result = []
for id in ids:
if isinstance(id, str):
if self.net.hasEdge(id):
result.append(self.net.getEdge(id))
else:
raise Exception("unknown edge '%s'" % id)
else:
result.append(id)
return result
def least_cost(self, start, dest, costFactors=defaultdict(lambda: 1.0)):
"""return the cost of the shortest path from start to destination edge"""
start, dest = self._getEdge(start, dest)
D, P = self._route(start, dest, costFactors)
if dest in D:
return D[dest]
else:
raise ("No path between %s and %s found" %
(start.getID(), dest.getID()))