Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
emscripten-core
GitHub Repository: emscripten-core/emscripten
Path: blob/main/system/lib/libcxx/src/ryu/f2s.cpp
6175 views
1
//===----------------------------------------------------------------------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
9
// Copyright (c) Microsoft Corporation.
10
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
11
12
// Copyright 2018 Ulf Adams
13
// Copyright (c) Microsoft Corporation. All rights reserved.
14
15
// Boost Software License - Version 1.0 - August 17th, 2003
16
17
// Permission is hereby granted, free of charge, to any person or organization
18
// obtaining a copy of the software and accompanying documentation covered by
19
// this license (the "Software") to use, reproduce, display, distribute,
20
// execute, and transmit the Software, and to prepare derivative works of the
21
// Software, and to permit third-parties to whom the Software is furnished to
22
// do so, all subject to the following:
23
24
// The copyright notices in the Software and this entire statement, including
25
// the above license grant, this restriction and the following disclaimer,
26
// must be included in all copies of the Software, in whole or in part, and
27
// all derivative works of the Software, unless such copies or derivative
28
// works are solely in the form of machine-executable object code generated by
29
// a source language processor.
30
31
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
32
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
33
// FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT
34
// SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE
35
// FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE,
36
// ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
37
// DEALINGS IN THE SOFTWARE.
38
39
// Avoid formatting to keep the changes with the original code minimal.
40
// clang-format off
41
42
#include <__assert>
43
#include <__config>
44
#include <charconv>
45
#include <cstdint>
46
#include <cstddef>
47
48
#include "include/ryu/common.h"
49
#include "include/ryu/d2fixed.h"
50
#include "include/ryu/d2s_intrinsics.h"
51
#include "include/ryu/digit_table.h"
52
#include "include/ryu/f2s.h"
53
#include "include/ryu/ryu.h"
54
55
_LIBCPP_BEGIN_NAMESPACE_STD
56
57
inline constexpr int __FLOAT_MANTISSA_BITS = 23;
58
inline constexpr int __FLOAT_EXPONENT_BITS = 8;
59
inline constexpr int __FLOAT_BIAS = 127;
60
61
inline constexpr int __FLOAT_POW5_INV_BITCOUNT = 59;
62
inline constexpr uint64_t __FLOAT_POW5_INV_SPLIT[31] = {
63
576460752303423489u, 461168601842738791u, 368934881474191033u, 295147905179352826u,
64
472236648286964522u, 377789318629571618u, 302231454903657294u, 483570327845851670u,
65
386856262276681336u, 309485009821345069u, 495176015714152110u, 396140812571321688u,
66
316912650057057351u, 507060240091291761u, 405648192073033409u, 324518553658426727u,
67
519229685853482763u, 415383748682786211u, 332306998946228969u, 531691198313966350u,
68
425352958651173080u, 340282366920938464u, 544451787073501542u, 435561429658801234u,
69
348449143727040987u, 557518629963265579u, 446014903970612463u, 356811923176489971u,
70
570899077082383953u, 456719261665907162u, 365375409332725730u
71
};
72
inline constexpr int __FLOAT_POW5_BITCOUNT = 61;
73
inline constexpr uint64_t __FLOAT_POW5_SPLIT[47] = {
74
1152921504606846976u, 1441151880758558720u, 1801439850948198400u, 2251799813685248000u,
75
1407374883553280000u, 1759218604441600000u, 2199023255552000000u, 1374389534720000000u,
76
1717986918400000000u, 2147483648000000000u, 1342177280000000000u, 1677721600000000000u,
77
2097152000000000000u, 1310720000000000000u, 1638400000000000000u, 2048000000000000000u,
78
1280000000000000000u, 1600000000000000000u, 2000000000000000000u, 1250000000000000000u,
79
1562500000000000000u, 1953125000000000000u, 1220703125000000000u, 1525878906250000000u,
80
1907348632812500000u, 1192092895507812500u, 1490116119384765625u, 1862645149230957031u,
81
1164153218269348144u, 1455191522836685180u, 1818989403545856475u, 2273736754432320594u,
82
1421085471520200371u, 1776356839400250464u, 2220446049250313080u, 1387778780781445675u,
83
1734723475976807094u, 2168404344971008868u, 1355252715606880542u, 1694065894508600678u,
84
2117582368135750847u, 1323488980084844279u, 1654361225106055349u, 2067951531382569187u,
85
1292469707114105741u, 1615587133892632177u, 2019483917365790221u
86
};
87
88
[[nodiscard]] _LIBCPP_HIDE_FROM_ABI inline uint32_t __pow5Factor(uint32_t __value) {
89
uint32_t __count = 0;
90
for (;;) {
91
_LIBCPP_ASSERT_INTERNAL(__value != 0, "");
92
const uint32_t __q = __value / 5;
93
const uint32_t __r = __value % 5;
94
if (__r != 0) {
95
break;
96
}
97
__value = __q;
98
++__count;
99
}
100
return __count;
101
}
102
103
// Returns true if __value is divisible by 5^__p.
104
[[nodiscard]] _LIBCPP_HIDE_FROM_ABI inline bool __multipleOfPowerOf5(const uint32_t __value, const uint32_t __p) {
105
return __pow5Factor(__value) >= __p;
106
}
107
108
// Returns true if __value is divisible by 2^__p.
109
[[nodiscard]] _LIBCPP_HIDE_FROM_ABI inline bool __multipleOfPowerOf2(const uint32_t __value, const uint32_t __p) {
110
_LIBCPP_ASSERT_INTERNAL(__value != 0, "");
111
_LIBCPP_ASSERT_INTERNAL(__p < 32, "");
112
// __builtin_ctz doesn't appear to be faster here.
113
return (__value & ((1u << __p) - 1)) == 0;
114
}
115
116
[[nodiscard]] _LIBCPP_HIDE_FROM_ABI inline uint32_t __mulShift(const uint32_t __m, const uint64_t __factor, const int32_t __shift) {
117
_LIBCPP_ASSERT_INTERNAL(__shift > 32, "");
118
119
// The casts here help MSVC to avoid calls to the __allmul library
120
// function.
121
const uint32_t __factorLo = static_cast<uint32_t>(__factor);
122
const uint32_t __factorHi = static_cast<uint32_t>(__factor >> 32);
123
const uint64_t __bits0 = static_cast<uint64_t>(__m) * __factorLo;
124
const uint64_t __bits1 = static_cast<uint64_t>(__m) * __factorHi;
125
126
#ifndef _LIBCPP_64_BIT
127
// On 32-bit platforms we can avoid a 64-bit shift-right since we only
128
// need the upper 32 bits of the result and the shift value is > 32.
129
const uint32_t __bits0Hi = static_cast<uint32_t>(__bits0 >> 32);
130
uint32_t __bits1Lo = static_cast<uint32_t>(__bits1);
131
uint32_t __bits1Hi = static_cast<uint32_t>(__bits1 >> 32);
132
__bits1Lo += __bits0Hi;
133
__bits1Hi += (__bits1Lo < __bits0Hi);
134
const int32_t __s = __shift - 32;
135
return (__bits1Hi << (32 - __s)) | (__bits1Lo >> __s);
136
#else // ^^^ 32-bit ^^^ / vvv 64-bit vvv
137
const uint64_t __sum = (__bits0 >> 32) + __bits1;
138
const uint64_t __shiftedSum = __sum >> (__shift - 32);
139
_LIBCPP_ASSERT_INTERNAL(__shiftedSum <= UINT32_MAX, "");
140
return static_cast<uint32_t>(__shiftedSum);
141
#endif // ^^^ 64-bit ^^^
142
}
143
144
[[nodiscard]] _LIBCPP_HIDE_FROM_ABI inline uint32_t __mulPow5InvDivPow2(const uint32_t __m, const uint32_t __q, const int32_t __j) {
145
return __mulShift(__m, __FLOAT_POW5_INV_SPLIT[__q], __j);
146
}
147
148
[[nodiscard]] _LIBCPP_HIDE_FROM_ABI inline uint32_t __mulPow5divPow2(const uint32_t __m, const uint32_t __i, const int32_t __j) {
149
return __mulShift(__m, __FLOAT_POW5_SPLIT[__i], __j);
150
}
151
152
// A floating decimal representing m * 10^e.
153
struct __floating_decimal_32 {
154
uint32_t __mantissa;
155
int32_t __exponent;
156
};
157
158
[[nodiscard]] _LIBCPP_HIDE_FROM_ABI inline __floating_decimal_32 __f2d(const uint32_t __ieeeMantissa, const uint32_t __ieeeExponent) {
159
int32_t __e2;
160
uint32_t __m2;
161
if (__ieeeExponent == 0) {
162
// We subtract 2 so that the bounds computation has 2 additional bits.
163
__e2 = 1 - __FLOAT_BIAS - __FLOAT_MANTISSA_BITS - 2;
164
__m2 = __ieeeMantissa;
165
} else {
166
__e2 = static_cast<int32_t>(__ieeeExponent) - __FLOAT_BIAS - __FLOAT_MANTISSA_BITS - 2;
167
__m2 = (1u << __FLOAT_MANTISSA_BITS) | __ieeeMantissa;
168
}
169
const bool __even = (__m2 & 1) == 0;
170
const bool __acceptBounds = __even;
171
172
// Step 2: Determine the interval of valid decimal representations.
173
const uint32_t __mv = 4 * __m2;
174
const uint32_t __mp = 4 * __m2 + 2;
175
// Implicit bool -> int conversion. True is 1, false is 0.
176
const uint32_t __mmShift = __ieeeMantissa != 0 || __ieeeExponent <= 1;
177
const uint32_t __mm = 4 * __m2 - 1 - __mmShift;
178
179
// Step 3: Convert to a decimal power base using 64-bit arithmetic.
180
uint32_t __vr, __vp, __vm;
181
int32_t __e10;
182
bool __vmIsTrailingZeros = false;
183
bool __vrIsTrailingZeros = false;
184
uint8_t __lastRemovedDigit = 0;
185
if (__e2 >= 0) {
186
const uint32_t __q = __log10Pow2(__e2);
187
__e10 = static_cast<int32_t>(__q);
188
const int32_t __k = __FLOAT_POW5_INV_BITCOUNT + __pow5bits(static_cast<int32_t>(__q)) - 1;
189
const int32_t __i = -__e2 + static_cast<int32_t>(__q) + __k;
190
__vr = __mulPow5InvDivPow2(__mv, __q, __i);
191
__vp = __mulPow5InvDivPow2(__mp, __q, __i);
192
__vm = __mulPow5InvDivPow2(__mm, __q, __i);
193
if (__q != 0 && (__vp - 1) / 10 <= __vm / 10) {
194
// We need to know one removed digit even if we are not going to loop below. We could use
195
// __q = X - 1 above, except that would require 33 bits for the result, and we've found that
196
// 32-bit arithmetic is faster even on 64-bit machines.
197
const int32_t __l = __FLOAT_POW5_INV_BITCOUNT + __pow5bits(static_cast<int32_t>(__q - 1)) - 1;
198
__lastRemovedDigit = static_cast<uint8_t>(__mulPow5InvDivPow2(__mv, __q - 1,
199
-__e2 + static_cast<int32_t>(__q) - 1 + __l) % 10);
200
}
201
if (__q <= 9) {
202
// The largest power of 5 that fits in 24 bits is 5^10, but __q <= 9 seems to be safe as well.
203
// Only one of __mp, __mv, and __mm can be a multiple of 5, if any.
204
if (__mv % 5 == 0) {
205
__vrIsTrailingZeros = __multipleOfPowerOf5(__mv, __q);
206
} else if (__acceptBounds) {
207
__vmIsTrailingZeros = __multipleOfPowerOf5(__mm, __q);
208
} else {
209
__vp -= __multipleOfPowerOf5(__mp, __q);
210
}
211
}
212
} else {
213
const uint32_t __q = __log10Pow5(-__e2);
214
__e10 = static_cast<int32_t>(__q) + __e2;
215
const int32_t __i = -__e2 - static_cast<int32_t>(__q);
216
const int32_t __k = __pow5bits(__i) - __FLOAT_POW5_BITCOUNT;
217
int32_t __j = static_cast<int32_t>(__q) - __k;
218
__vr = __mulPow5divPow2(__mv, static_cast<uint32_t>(__i), __j);
219
__vp = __mulPow5divPow2(__mp, static_cast<uint32_t>(__i), __j);
220
__vm = __mulPow5divPow2(__mm, static_cast<uint32_t>(__i), __j);
221
if (__q != 0 && (__vp - 1) / 10 <= __vm / 10) {
222
__j = static_cast<int32_t>(__q) - 1 - (__pow5bits(__i + 1) - __FLOAT_POW5_BITCOUNT);
223
__lastRemovedDigit = static_cast<uint8_t>(__mulPow5divPow2(__mv, static_cast<uint32_t>(__i + 1), __j) % 10);
224
}
225
if (__q <= 1) {
226
// {__vr,__vp,__vm} is trailing zeros if {__mv,__mp,__mm} has at least __q trailing 0 bits.
227
// __mv = 4 * __m2, so it always has at least two trailing 0 bits.
228
__vrIsTrailingZeros = true;
229
if (__acceptBounds) {
230
// __mm = __mv - 1 - __mmShift, so it has 1 trailing 0 bit iff __mmShift == 1.
231
__vmIsTrailingZeros = __mmShift == 1;
232
} else {
233
// __mp = __mv + 2, so it always has at least one trailing 0 bit.
234
--__vp;
235
}
236
} else if (__q < 31) { // TRANSITION(ulfjack): Use a tighter bound here.
237
__vrIsTrailingZeros = __multipleOfPowerOf2(__mv, __q - 1);
238
}
239
}
240
241
// Step 4: Find the shortest decimal representation in the interval of valid representations.
242
int32_t __removed = 0;
243
uint32_t _Output;
244
if (__vmIsTrailingZeros || __vrIsTrailingZeros) {
245
// General case, which happens rarely (~4.0%).
246
while (__vp / 10 > __vm / 10) {
247
#ifdef __clang__ // TRANSITION, LLVM-23106
248
__vmIsTrailingZeros &= __vm - (__vm / 10) * 10 == 0;
249
#else
250
__vmIsTrailingZeros &= __vm % 10 == 0;
251
#endif
252
__vrIsTrailingZeros &= __lastRemovedDigit == 0;
253
__lastRemovedDigit = static_cast<uint8_t>(__vr % 10);
254
__vr /= 10;
255
__vp /= 10;
256
__vm /= 10;
257
++__removed;
258
}
259
if (__vmIsTrailingZeros) {
260
while (__vm % 10 == 0) {
261
__vrIsTrailingZeros &= __lastRemovedDigit == 0;
262
__lastRemovedDigit = static_cast<uint8_t>(__vr % 10);
263
__vr /= 10;
264
__vp /= 10;
265
__vm /= 10;
266
++__removed;
267
}
268
}
269
if (__vrIsTrailingZeros && __lastRemovedDigit == 5 && __vr % 2 == 0) {
270
// Round even if the exact number is .....50..0.
271
__lastRemovedDigit = 4;
272
}
273
// We need to take __vr + 1 if __vr is outside bounds or we need to round up.
274
_Output = __vr + ((__vr == __vm && (!__acceptBounds || !__vmIsTrailingZeros)) || __lastRemovedDigit >= 5);
275
} else {
276
// Specialized for the common case (~96.0%). Percentages below are relative to this.
277
// Loop iterations below (approximately):
278
// 0: 13.6%, 1: 70.7%, 2: 14.1%, 3: 1.39%, 4: 0.14%, 5+: 0.01%
279
while (__vp / 10 > __vm / 10) {
280
__lastRemovedDigit = static_cast<uint8_t>(__vr % 10);
281
__vr /= 10;
282
__vp /= 10;
283
__vm /= 10;
284
++__removed;
285
}
286
// We need to take __vr + 1 if __vr is outside bounds or we need to round up.
287
_Output = __vr + (__vr == __vm || __lastRemovedDigit >= 5);
288
}
289
const int32_t __exp = __e10 + __removed;
290
291
__floating_decimal_32 __fd;
292
__fd.__exponent = __exp;
293
__fd.__mantissa = _Output;
294
return __fd;
295
}
296
297
[[nodiscard]] _LIBCPP_HIDE_FROM_ABI inline to_chars_result _Large_integer_to_chars(char* const _First, char* const _Last,
298
const uint32_t _Mantissa2, const int32_t _Exponent2) {
299
300
// Print the integer _Mantissa2 * 2^_Exponent2 exactly.
301
302
// For nonzero integers, _Exponent2 >= -23. (The minimum value occurs when _Mantissa2 * 2^_Exponent2 is 1.
303
// In that case, _Mantissa2 is the implicit 1 bit followed by 23 zeros, so _Exponent2 is -23 to shift away
304
// the zeros.) The dense range of exactly representable integers has negative or zero exponents
305
// (as positive exponents make the range non-dense). For that dense range, Ryu will always be used:
306
// every digit is necessary to uniquely identify the value, so Ryu must print them all.
307
308
// Positive exponents are the non-dense range of exactly representable integers.
309
// This contains all of the values for which Ryu can't be used (and a few Ryu-friendly values).
310
311
// Performance note: Long division appears to be faster than losslessly widening float to double and calling
312
// __d2fixed_buffered_n(). If __f2fixed_buffered_n() is implemented, it might be faster than long division.
313
314
_LIBCPP_ASSERT_INTERNAL(_Exponent2 > 0, "");
315
_LIBCPP_ASSERT_INTERNAL(_Exponent2 <= 104, ""); // because __ieeeExponent <= 254
316
317
// Manually represent _Mantissa2 * 2^_Exponent2 as a large integer. _Mantissa2 is always 24 bits
318
// (due to the implicit bit), while _Exponent2 indicates a shift of at most 104 bits.
319
// 24 + 104 equals 128 equals 4 * 32, so we need exactly 4 32-bit elements.
320
// We use a little-endian representation, visualized like this:
321
322
// << left shift <<
323
// most significant
324
// _Data[3] _Data[2] _Data[1] _Data[0]
325
// least significant
326
// >> right shift >>
327
328
constexpr uint32_t _Data_size = 4;
329
uint32_t _Data[_Data_size]{};
330
331
// _Maxidx is the index of the most significant nonzero element.
332
uint32_t _Maxidx = ((24 + static_cast<uint32_t>(_Exponent2) + 31) / 32) - 1;
333
_LIBCPP_ASSERT_INTERNAL(_Maxidx < _Data_size, "");
334
335
const uint32_t _Bit_shift = static_cast<uint32_t>(_Exponent2) % 32;
336
if (_Bit_shift <= 8) { // _Mantissa2's 24 bits don't cross an element boundary
337
_Data[_Maxidx] = _Mantissa2 << _Bit_shift;
338
} else { // _Mantissa2's 24 bits cross an element boundary
339
_Data[_Maxidx - 1] = _Mantissa2 << _Bit_shift;
340
_Data[_Maxidx] = _Mantissa2 >> (32 - _Bit_shift);
341
}
342
343
// If Ryu hasn't determined the total output length, we need to buffer the digits generated from right to left
344
// by long division. The largest possible float is: 340'282346638'528859811'704183484'516925440
345
uint32_t _Blocks[4];
346
int32_t _Filled_blocks = 0;
347
// From left to right, we're going to print:
348
// _Data[0] will be [1, 10] digits.
349
// Then if _Filled_blocks > 0:
350
// _Blocks[_Filled_blocks - 1], ..., _Blocks[0] will be 0-filled 9-digit blocks.
351
352
if (_Maxidx != 0) { // If the integer is actually large, perform long division.
353
// Otherwise, skip to printing _Data[0].
354
for (;;) {
355
// Loop invariant: _Maxidx != 0 (i.e. the integer is actually large)
356
357
const uint32_t _Most_significant_elem = _Data[_Maxidx];
358
const uint32_t _Initial_remainder = _Most_significant_elem % 1000000000;
359
const uint32_t _Initial_quotient = _Most_significant_elem / 1000000000;
360
_Data[_Maxidx] = _Initial_quotient;
361
uint64_t _Remainder = _Initial_remainder;
362
363
// Process less significant elements.
364
uint32_t _Idx = _Maxidx;
365
do {
366
--_Idx; // Initially, _Remainder is at most 10^9 - 1.
367
368
// Now, _Remainder is at most (10^9 - 1) * 2^32 + 2^32 - 1, simplified to 10^9 * 2^32 - 1.
369
_Remainder = (_Remainder << 32) | _Data[_Idx];
370
371
// floor((10^9 * 2^32 - 1) / 10^9) == 2^32 - 1, so uint32_t _Quotient is lossless.
372
const uint32_t _Quotient = static_cast<uint32_t>(__div1e9(_Remainder));
373
374
// _Remainder is at most 10^9 - 1 again.
375
// For uint32_t truncation, see the __mod1e9() comment in d2s_intrinsics.h.
376
_Remainder = static_cast<uint32_t>(_Remainder) - 1000000000u * _Quotient;
377
378
_Data[_Idx] = _Quotient;
379
} while (_Idx != 0);
380
381
// Store a 0-filled 9-digit block.
382
_Blocks[_Filled_blocks++] = static_cast<uint32_t>(_Remainder);
383
384
if (_Initial_quotient == 0) { // Is the large integer shrinking?
385
--_Maxidx; // log2(10^9) is 29.9, so we can't shrink by more than one element.
386
if (_Maxidx == 0) {
387
break; // We've finished long division. Now we need to print _Data[0].
388
}
389
}
390
}
391
}
392
393
_LIBCPP_ASSERT_INTERNAL(_Data[0] != 0, "");
394
for (uint32_t _Idx = 1; _Idx < _Data_size; ++_Idx) {
395
_LIBCPP_ASSERT_INTERNAL(_Data[_Idx] == 0, "");
396
}
397
398
const uint32_t _Data_olength = _Data[0] >= 1000000000 ? 10 : __decimalLength9(_Data[0]);
399
const uint32_t _Total_fixed_length = _Data_olength + 9 * _Filled_blocks;
400
401
if (_Last - _First < static_cast<ptrdiff_t>(_Total_fixed_length)) {
402
return { _Last, errc::value_too_large };
403
}
404
405
char* _Result = _First;
406
407
// Print _Data[0]. While it's up to 10 digits,
408
// which is more than Ryu generates, the code below can handle this.
409
__append_n_digits(_Data_olength, _Data[0], _Result);
410
_Result += _Data_olength;
411
412
// Print 0-filled 9-digit blocks.
413
for (int32_t _Idx = _Filled_blocks - 1; _Idx >= 0; --_Idx) {
414
__append_nine_digits(_Blocks[_Idx], _Result);
415
_Result += 9;
416
}
417
418
return { _Result, errc{} };
419
}
420
421
[[nodiscard]] _LIBCPP_HIDE_FROM_ABI inline to_chars_result __to_chars(char* const _First, char* const _Last, const __floating_decimal_32 __v,
422
chars_format _Fmt, const uint32_t __ieeeMantissa, const uint32_t __ieeeExponent) {
423
// Step 5: Print the decimal representation.
424
uint32_t _Output = __v.__mantissa;
425
int32_t _Ryu_exponent = __v.__exponent;
426
const uint32_t __olength = __decimalLength9(_Output);
427
int32_t _Scientific_exponent = _Ryu_exponent + static_cast<int32_t>(__olength) - 1;
428
429
if (_Fmt == chars_format{}) {
430
int32_t _Lower;
431
int32_t _Upper;
432
433
if (__olength == 1) {
434
// Value | Fixed | Scientific
435
// 1e-3 | "0.001" | "1e-03"
436
// 1e4 | "10000" | "1e+04"
437
_Lower = -3;
438
_Upper = 4;
439
} else {
440
// Value | Fixed | Scientific
441
// 1234e-7 | "0.0001234" | "1.234e-04"
442
// 1234e5 | "123400000" | "1.234e+08"
443
_Lower = -static_cast<int32_t>(__olength + 3);
444
_Upper = 5;
445
}
446
447
if (_Lower <= _Ryu_exponent && _Ryu_exponent <= _Upper) {
448
_Fmt = chars_format::fixed;
449
} else {
450
_Fmt = chars_format::scientific;
451
}
452
} else if (_Fmt == chars_format::general) {
453
// C11 7.21.6.1 "The fprintf function"/8:
454
// "Let P equal [...] 6 if the precision is omitted [...].
455
// Then, if a conversion with style E would have an exponent of X:
456
// - if P > X >= -4, the conversion is with style f [...].
457
// - otherwise, the conversion is with style e [...]."
458
if (-4 <= _Scientific_exponent && _Scientific_exponent < 6) {
459
_Fmt = chars_format::fixed;
460
} else {
461
_Fmt = chars_format::scientific;
462
}
463
}
464
465
if (_Fmt == chars_format::fixed) {
466
// Example: _Output == 1729, __olength == 4
467
468
// _Ryu_exponent | Printed | _Whole_digits | _Total_fixed_length | Notes
469
// --------------|----------|---------------|----------------------|---------------------------------------
470
// 2 | 172900 | 6 | _Whole_digits | Ryu can't be used for printing
471
// 1 | 17290 | 5 | (sometimes adjusted) | when the trimmed digits are nonzero.
472
// --------------|----------|---------------|----------------------|---------------------------------------
473
// 0 | 1729 | 4 | _Whole_digits | Unified length cases.
474
// --------------|----------|---------------|----------------------|---------------------------------------
475
// -1 | 172.9 | 3 | __olength + 1 | This case can't happen for
476
// -2 | 17.29 | 2 | | __olength == 1, but no additional
477
// -3 | 1.729 | 1 | | code is needed to avoid it.
478
// --------------|----------|---------------|----------------------|---------------------------------------
479
// -4 | 0.1729 | 0 | 2 - _Ryu_exponent | C11 7.21.6.1 "The fprintf function"/8:
480
// -5 | 0.01729 | -1 | | "If a decimal-point character appears,
481
// -6 | 0.001729 | -2 | | at least one digit appears before it."
482
483
const int32_t _Whole_digits = static_cast<int32_t>(__olength) + _Ryu_exponent;
484
485
uint32_t _Total_fixed_length;
486
if (_Ryu_exponent >= 0) { // cases "172900" and "1729"
487
_Total_fixed_length = static_cast<uint32_t>(_Whole_digits);
488
if (_Output == 1) {
489
// Rounding can affect the number of digits.
490
// For example, 1e11f is exactly "99999997952" which is 11 digits instead of 12.
491
// We can use a lookup table to detect this and adjust the total length.
492
static constexpr uint8_t _Adjustment[39] = {
493
0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,1,0,1,1,1,0,0,1,1,0,1,0,1,1,0,0,1,0,1,1,0,1,1,1 };
494
_Total_fixed_length -= _Adjustment[_Ryu_exponent];
495
// _Whole_digits doesn't need to be adjusted because these cases won't refer to it later.
496
}
497
} else if (_Whole_digits > 0) { // case "17.29"
498
_Total_fixed_length = __olength + 1;
499
} else { // case "0.001729"
500
_Total_fixed_length = static_cast<uint32_t>(2 - _Ryu_exponent);
501
}
502
503
if (_Last - _First < static_cast<ptrdiff_t>(_Total_fixed_length)) {
504
return { _Last, errc::value_too_large };
505
}
506
507
char* _Mid;
508
if (_Ryu_exponent > 0) { // case "172900"
509
bool _Can_use_ryu;
510
511
if (_Ryu_exponent > 10) { // 10^10 is the largest power of 10 that's exactly representable as a float.
512
_Can_use_ryu = false;
513
} else {
514
// Ryu generated X: __v.__mantissa * 10^_Ryu_exponent
515
// __v.__mantissa == 2^_Trailing_zero_bits * (__v.__mantissa >> _Trailing_zero_bits)
516
// 10^_Ryu_exponent == 2^_Ryu_exponent * 5^_Ryu_exponent
517
518
// _Trailing_zero_bits is [0, 29] (aside: because 2^29 is the largest power of 2
519
// with 9 decimal digits, which is float's round-trip limit.)
520
// _Ryu_exponent is [1, 10].
521
// Normalization adds [2, 23] (aside: at least 2 because the pre-normalized mantissa is at least 5).
522
// This adds up to [3, 62], which is well below float's maximum binary exponent 127.
523
524
// Therefore, we just need to consider (__v.__mantissa >> _Trailing_zero_bits) * 5^_Ryu_exponent.
525
526
// If that product would exceed 24 bits, then X can't be exactly represented as a float.
527
// (That's not a problem for round-tripping, because X is close enough to the original float,
528
// but X isn't mathematically equal to the original float.) This requires a high-precision fallback.
529
530
// If the product is 24 bits or smaller, then X can be exactly represented as a float (and we don't
531
// need to re-synthesize it; the original float must have been X, because Ryu wouldn't produce the
532
// same output for two different floats X and Y). This allows Ryu's output to be used (zero-filled).
533
534
// (2^24 - 1) / 5^0 (for indexing), (2^24 - 1) / 5^1, ..., (2^24 - 1) / 5^10
535
static constexpr uint32_t _Max_shifted_mantissa[11] = {
536
16777215, 3355443, 671088, 134217, 26843, 5368, 1073, 214, 42, 8, 1 };
537
538
unsigned long _Trailing_zero_bits;
539
(void) _BitScanForward(&_Trailing_zero_bits, __v.__mantissa); // __v.__mantissa is guaranteed nonzero
540
const uint32_t _Shifted_mantissa = __v.__mantissa >> _Trailing_zero_bits;
541
_Can_use_ryu = _Shifted_mantissa <= _Max_shifted_mantissa[_Ryu_exponent];
542
}
543
544
if (!_Can_use_ryu) {
545
const uint32_t _Mantissa2 = __ieeeMantissa | (1u << __FLOAT_MANTISSA_BITS); // restore implicit bit
546
const int32_t _Exponent2 = static_cast<int32_t>(__ieeeExponent)
547
- __FLOAT_BIAS - __FLOAT_MANTISSA_BITS; // bias and normalization
548
549
// Performance note: We've already called Ryu, so this will redundantly perform buffering and bounds checking.
550
return _Large_integer_to_chars(_First, _Last, _Mantissa2, _Exponent2);
551
}
552
553
// _Can_use_ryu
554
// Print the decimal digits, left-aligned within [_First, _First + _Total_fixed_length).
555
_Mid = _First + __olength;
556
} else { // cases "1729", "17.29", and "0.001729"
557
// Print the decimal digits, right-aligned within [_First, _First + _Total_fixed_length).
558
_Mid = _First + _Total_fixed_length;
559
}
560
561
while (_Output >= 10000) {
562
#ifdef __clang__ // TRANSITION, LLVM-38217
563
const uint32_t __c = _Output - 10000 * (_Output / 10000);
564
#else
565
const uint32_t __c = _Output % 10000;
566
#endif
567
_Output /= 10000;
568
const uint32_t __c0 = (__c % 100) << 1;
569
const uint32_t __c1 = (__c / 100) << 1;
570
std::memcpy(_Mid -= 2, __DIGIT_TABLE + __c0, 2);
571
std::memcpy(_Mid -= 2, __DIGIT_TABLE + __c1, 2);
572
}
573
if (_Output >= 100) {
574
const uint32_t __c = (_Output % 100) << 1;
575
_Output /= 100;
576
std::memcpy(_Mid -= 2, __DIGIT_TABLE + __c, 2);
577
}
578
if (_Output >= 10) {
579
const uint32_t __c = _Output << 1;
580
std::memcpy(_Mid -= 2, __DIGIT_TABLE + __c, 2);
581
} else {
582
*--_Mid = static_cast<char>('0' + _Output);
583
}
584
585
if (_Ryu_exponent > 0) { // case "172900" with _Can_use_ryu
586
// Performance note: it might be more efficient to do this immediately after setting _Mid.
587
std::memset(_First + __olength, '0', static_cast<size_t>(_Ryu_exponent));
588
} else if (_Ryu_exponent == 0) { // case "1729"
589
// Done!
590
} else if (_Whole_digits > 0) { // case "17.29"
591
// Performance note: moving digits might not be optimal.
592
std::memmove(_First, _First + 1, static_cast<size_t>(_Whole_digits));
593
_First[_Whole_digits] = '.';
594
} else { // case "0.001729"
595
// Performance note: a larger memset() followed by overwriting '.' might be more efficient.
596
_First[0] = '0';
597
_First[1] = '.';
598
std::memset(_First + 2, '0', static_cast<size_t>(-_Whole_digits));
599
}
600
601
return { _First + _Total_fixed_length, errc{} };
602
}
603
604
const uint32_t _Total_scientific_length =
605
__olength + (__olength > 1) + 4; // digits + possible decimal point + scientific exponent
606
if (_Last - _First < static_cast<ptrdiff_t>(_Total_scientific_length)) {
607
return { _Last, errc::value_too_large };
608
}
609
char* const __result = _First;
610
611
// Print the decimal digits.
612
uint32_t __i = 0;
613
while (_Output >= 10000) {
614
#ifdef __clang__ // TRANSITION, LLVM-38217
615
const uint32_t __c = _Output - 10000 * (_Output / 10000);
616
#else
617
const uint32_t __c = _Output % 10000;
618
#endif
619
_Output /= 10000;
620
const uint32_t __c0 = (__c % 100) << 1;
621
const uint32_t __c1 = (__c / 100) << 1;
622
std::memcpy(__result + __olength - __i - 1, __DIGIT_TABLE + __c0, 2);
623
std::memcpy(__result + __olength - __i - 3, __DIGIT_TABLE + __c1, 2);
624
__i += 4;
625
}
626
if (_Output >= 100) {
627
const uint32_t __c = (_Output % 100) << 1;
628
_Output /= 100;
629
std::memcpy(__result + __olength - __i - 1, __DIGIT_TABLE + __c, 2);
630
__i += 2;
631
}
632
if (_Output >= 10) {
633
const uint32_t __c = _Output << 1;
634
// We can't use memcpy here: the decimal dot goes between these two digits.
635
__result[2] = __DIGIT_TABLE[__c + 1];
636
__result[0] = __DIGIT_TABLE[__c];
637
} else {
638
__result[0] = static_cast<char>('0' + _Output);
639
}
640
641
// Print decimal point if needed.
642
uint32_t __index;
643
if (__olength > 1) {
644
__result[1] = '.';
645
__index = __olength + 1;
646
} else {
647
__index = 1;
648
}
649
650
// Print the exponent.
651
__result[__index++] = 'e';
652
if (_Scientific_exponent < 0) {
653
__result[__index++] = '-';
654
_Scientific_exponent = -_Scientific_exponent;
655
} else {
656
__result[__index++] = '+';
657
}
658
659
std::memcpy(__result + __index, __DIGIT_TABLE + 2 * _Scientific_exponent, 2);
660
__index += 2;
661
662
return { _First + _Total_scientific_length, errc{} };
663
}
664
665
[[nodiscard]] to_chars_result __f2s_buffered_n(char* const _First, char* const _Last, const float __f,
666
const chars_format _Fmt) {
667
668
// Step 1: Decode the floating-point number, and unify normalized and subnormal cases.
669
const uint32_t __bits = __float_to_bits(__f);
670
671
// Case distinction; exit early for the easy cases.
672
if (__bits == 0) {
673
if (_Fmt == chars_format::scientific) {
674
if (_Last - _First < 5) {
675
return { _Last, errc::value_too_large };
676
}
677
678
std::memcpy(_First, "0e+00", 5);
679
680
return { _First + 5, errc{} };
681
}
682
683
// Print "0" for chars_format::fixed, chars_format::general, and chars_format{}.
684
if (_First == _Last) {
685
return { _Last, errc::value_too_large };
686
}
687
688
*_First = '0';
689
690
return { _First + 1, errc{} };
691
}
692
693
// Decode __bits into mantissa and exponent.
694
const uint32_t __ieeeMantissa = __bits & ((1u << __FLOAT_MANTISSA_BITS) - 1);
695
const uint32_t __ieeeExponent = __bits >> __FLOAT_MANTISSA_BITS;
696
697
// When _Fmt == chars_format::fixed and the floating-point number is a large integer,
698
// it's faster to skip Ryu and immediately print the integer exactly.
699
if (_Fmt == chars_format::fixed) {
700
const uint32_t _Mantissa2 = __ieeeMantissa | (1u << __FLOAT_MANTISSA_BITS); // restore implicit bit
701
const int32_t _Exponent2 = static_cast<int32_t>(__ieeeExponent)
702
- __FLOAT_BIAS - __FLOAT_MANTISSA_BITS; // bias and normalization
703
704
// Normal values are equal to _Mantissa2 * 2^_Exponent2.
705
// (Subnormals are different, but they'll be rejected by the _Exponent2 test here, so they can be ignored.)
706
707
if (_Exponent2 > 0) {
708
return _Large_integer_to_chars(_First, _Last, _Mantissa2, _Exponent2);
709
}
710
}
711
712
const __floating_decimal_32 __v = __f2d(__ieeeMantissa, __ieeeExponent);
713
return __to_chars(_First, _Last, __v, _Fmt, __ieeeMantissa, __ieeeExponent);
714
}
715
716
_LIBCPP_END_NAMESPACE_STD
717
718
// clang-format on
719
720