Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
emscripten-core
GitHub Repository: emscripten-core/emscripten
Path: blob/main/system/lib/mimalloc/src/random.c
6175 views
1
/* ----------------------------------------------------------------------------
2
Copyright (c) 2019-2021, Microsoft Research, Daan Leijen
3
This is free software; you can redistribute it and/or modify it under the
4
terms of the MIT license. A copy of the license can be found in the file
5
"LICENSE" at the root of this distribution.
6
-----------------------------------------------------------------------------*/
7
#include "mimalloc.h"
8
#include "mimalloc/internal.h"
9
#include "mimalloc/prim.h" // _mi_prim_random_buf
10
#include <string.h> // memset
11
12
/* ----------------------------------------------------------------------------
13
We use our own PRNG to keep predictable performance of random number generation
14
and to avoid implementations that use a lock. We only use the OS provided
15
random source to initialize the initial seeds. Since we do not need ultimate
16
performance but we do rely on the security (for secret cookies in secure mode)
17
we use a cryptographically secure generator (chacha20).
18
-----------------------------------------------------------------------------*/
19
20
#define MI_CHACHA_ROUNDS (20) // perhaps use 12 for better performance?
21
22
23
/* ----------------------------------------------------------------------------
24
Chacha20 implementation as the original algorithm with a 64-bit nonce
25
and counter: https://en.wikipedia.org/wiki/Salsa20
26
The input matrix has sixteen 32-bit values:
27
Position 0 to 3: constant key
28
Position 4 to 11: the key
29
Position 12 to 13: the counter.
30
Position 14 to 15: the nonce.
31
32
The implementation uses regular C code which compiles very well on modern compilers.
33
(gcc x64 has no register spills, and clang 6+ uses SSE instructions)
34
-----------------------------------------------------------------------------*/
35
36
static inline uint32_t rotl(uint32_t x, uint32_t shift) {
37
return (x << shift) | (x >> (32 - shift));
38
}
39
40
static inline void qround(uint32_t x[16], size_t a, size_t b, size_t c, size_t d) {
41
x[a] += x[b]; x[d] = rotl(x[d] ^ x[a], 16);
42
x[c] += x[d]; x[b] = rotl(x[b] ^ x[c], 12);
43
x[a] += x[b]; x[d] = rotl(x[d] ^ x[a], 8);
44
x[c] += x[d]; x[b] = rotl(x[b] ^ x[c], 7);
45
}
46
47
static void chacha_block(mi_random_ctx_t* ctx)
48
{
49
// scramble into `x`
50
uint32_t x[16];
51
for (size_t i = 0; i < 16; i++) {
52
x[i] = ctx->input[i];
53
}
54
for (size_t i = 0; i < MI_CHACHA_ROUNDS; i += 2) {
55
qround(x, 0, 4, 8, 12);
56
qround(x, 1, 5, 9, 13);
57
qround(x, 2, 6, 10, 14);
58
qround(x, 3, 7, 11, 15);
59
qround(x, 0, 5, 10, 15);
60
qround(x, 1, 6, 11, 12);
61
qround(x, 2, 7, 8, 13);
62
qround(x, 3, 4, 9, 14);
63
}
64
65
// add scrambled data to the initial state
66
for (size_t i = 0; i < 16; i++) {
67
ctx->output[i] = x[i] + ctx->input[i];
68
}
69
ctx->output_available = 16;
70
71
// increment the counter for the next round
72
ctx->input[12] += 1;
73
if (ctx->input[12] == 0) {
74
ctx->input[13] += 1;
75
if (ctx->input[13] == 0) { // and keep increasing into the nonce
76
ctx->input[14] += 1;
77
}
78
}
79
}
80
81
static uint32_t chacha_next32(mi_random_ctx_t* ctx) {
82
if (ctx->output_available <= 0) {
83
chacha_block(ctx);
84
ctx->output_available = 16; // (assign again to suppress static analysis warning)
85
}
86
const uint32_t x = ctx->output[16 - ctx->output_available];
87
ctx->output[16 - ctx->output_available] = 0; // reset once the data is handed out
88
ctx->output_available--;
89
return x;
90
}
91
92
static inline uint32_t read32(const uint8_t* p, size_t idx32) {
93
const size_t i = 4*idx32;
94
return ((uint32_t)p[i+0] | (uint32_t)p[i+1] << 8 | (uint32_t)p[i+2] << 16 | (uint32_t)p[i+3] << 24);
95
}
96
97
static void chacha_init(mi_random_ctx_t* ctx, const uint8_t key[32], uint64_t nonce)
98
{
99
// since we only use chacha for randomness (and not encryption) we
100
// do not _need_ to read 32-bit values as little endian but we do anyways
101
// just for being compatible :-)
102
memset(ctx, 0, sizeof(*ctx));
103
for (size_t i = 0; i < 4; i++) {
104
const uint8_t* sigma = (uint8_t*)"expand 32-byte k";
105
ctx->input[i] = read32(sigma,i);
106
}
107
for (size_t i = 0; i < 8; i++) {
108
ctx->input[i + 4] = read32(key,i);
109
}
110
ctx->input[12] = 0;
111
ctx->input[13] = 0;
112
ctx->input[14] = (uint32_t)nonce;
113
ctx->input[15] = (uint32_t)(nonce >> 32);
114
}
115
116
static void chacha_split(mi_random_ctx_t* ctx, uint64_t nonce, mi_random_ctx_t* ctx_new) {
117
memset(ctx_new, 0, sizeof(*ctx_new));
118
_mi_memcpy(ctx_new->input, ctx->input, sizeof(ctx_new->input));
119
ctx_new->input[12] = 0;
120
ctx_new->input[13] = 0;
121
ctx_new->input[14] = (uint32_t)nonce;
122
ctx_new->input[15] = (uint32_t)(nonce >> 32);
123
mi_assert_internal(ctx->input[14] != ctx_new->input[14] || ctx->input[15] != ctx_new->input[15]); // do not reuse nonces!
124
chacha_block(ctx_new);
125
}
126
127
128
/* ----------------------------------------------------------------------------
129
Random interface
130
-----------------------------------------------------------------------------*/
131
132
#if MI_DEBUG>1
133
static bool mi_random_is_initialized(mi_random_ctx_t* ctx) {
134
return (ctx != NULL && ctx->input[0] != 0);
135
}
136
#endif
137
138
void _mi_random_split(mi_random_ctx_t* ctx, mi_random_ctx_t* ctx_new) {
139
mi_assert_internal(mi_random_is_initialized(ctx));
140
mi_assert_internal(ctx != ctx_new);
141
chacha_split(ctx, (uintptr_t)ctx_new /*nonce*/, ctx_new);
142
}
143
144
uintptr_t _mi_random_next(mi_random_ctx_t* ctx) {
145
mi_assert_internal(mi_random_is_initialized(ctx));
146
#if MI_INTPTR_SIZE <= 4
147
return chacha_next32(ctx);
148
#elif MI_INTPTR_SIZE == 8
149
return (((uintptr_t)chacha_next32(ctx) << 32) | chacha_next32(ctx));
150
#else
151
# error "define mi_random_next for this platform"
152
#endif
153
}
154
155
156
/* ----------------------------------------------------------------------------
157
To initialize a fresh random context.
158
If we cannot get good randomness, we fall back to weak randomness based on a timer and ASLR.
159
-----------------------------------------------------------------------------*/
160
161
uintptr_t _mi_os_random_weak(uintptr_t extra_seed) {
162
uintptr_t x = (uintptr_t)&_mi_os_random_weak ^ extra_seed; // ASLR makes the address random
163
x ^= _mi_prim_clock_now();
164
// and do a few randomization steps
165
uintptr_t max = ((x ^ (x >> 17)) & 0x0F) + 1;
166
for (uintptr_t i = 0; i < max; i++) {
167
x = _mi_random_shuffle(x);
168
}
169
mi_assert_internal(x != 0);
170
return x;
171
}
172
173
static void mi_random_init_ex(mi_random_ctx_t* ctx, bool use_weak) {
174
uint8_t key[32];
175
if (use_weak || !_mi_prim_random_buf(key, sizeof(key))) {
176
// if we fail to get random data from the OS, we fall back to a
177
// weak random source based on the current time
178
#if !defined(__wasi__)
179
if (!use_weak) { _mi_warning_message("unable to use secure randomness\n"); }
180
#endif
181
uintptr_t x = _mi_os_random_weak(0);
182
for (size_t i = 0; i < 8; i++) { // key is eight 32-bit words.
183
x = _mi_random_shuffle(x);
184
((uint32_t*)key)[i] = (uint32_t)x;
185
}
186
ctx->weak = true;
187
}
188
else {
189
ctx->weak = false;
190
}
191
chacha_init(ctx, key, (uintptr_t)ctx /*nonce*/ );
192
}
193
194
void _mi_random_init(mi_random_ctx_t* ctx) {
195
mi_random_init_ex(ctx, false);
196
}
197
198
void _mi_random_init_weak(mi_random_ctx_t * ctx) {
199
mi_random_init_ex(ctx, true);
200
}
201
202
void _mi_random_reinit_if_weak(mi_random_ctx_t * ctx) {
203
if (ctx->weak) {
204
_mi_random_init(ctx);
205
}
206
}
207
208
/* --------------------------------------------------------
209
test vectors from <https://tools.ietf.org/html/rfc8439>
210
----------------------------------------------------------- */
211
/*
212
static bool array_equals(uint32_t* x, uint32_t* y, size_t n) {
213
for (size_t i = 0; i < n; i++) {
214
if (x[i] != y[i]) return false;
215
}
216
return true;
217
}
218
static void chacha_test(void)
219
{
220
uint32_t x[4] = { 0x11111111, 0x01020304, 0x9b8d6f43, 0x01234567 };
221
uint32_t x_out[4] = { 0xea2a92f4, 0xcb1cf8ce, 0x4581472e, 0x5881c4bb };
222
qround(x, 0, 1, 2, 3);
223
mi_assert_internal(array_equals(x, x_out, 4));
224
225
uint32_t y[16] = {
226
0x879531e0, 0xc5ecf37d, 0x516461b1, 0xc9a62f8a,
227
0x44c20ef3, 0x3390af7f, 0xd9fc690b, 0x2a5f714c,
228
0x53372767, 0xb00a5631, 0x974c541a, 0x359e9963,
229
0x5c971061, 0x3d631689, 0x2098d9d6, 0x91dbd320 };
230
uint32_t y_out[16] = {
231
0x879531e0, 0xc5ecf37d, 0xbdb886dc, 0xc9a62f8a,
232
0x44c20ef3, 0x3390af7f, 0xd9fc690b, 0xcfacafd2,
233
0xe46bea80, 0xb00a5631, 0x974c541a, 0x359e9963,
234
0x5c971061, 0xccc07c79, 0x2098d9d6, 0x91dbd320 };
235
qround(y, 2, 7, 8, 13);
236
mi_assert_internal(array_equals(y, y_out, 16));
237
238
mi_random_ctx_t r = {
239
{ 0x61707865, 0x3320646e, 0x79622d32, 0x6b206574,
240
0x03020100, 0x07060504, 0x0b0a0908, 0x0f0e0d0c,
241
0x13121110, 0x17161514, 0x1b1a1918, 0x1f1e1d1c,
242
0x00000001, 0x09000000, 0x4a000000, 0x00000000 },
243
{0},
244
0
245
};
246
uint32_t r_out[16] = {
247
0xe4e7f110, 0x15593bd1, 0x1fdd0f50, 0xc47120a3,
248
0xc7f4d1c7, 0x0368c033, 0x9aaa2204, 0x4e6cd4c3,
249
0x466482d2, 0x09aa9f07, 0x05d7c214, 0xa2028bd9,
250
0xd19c12b5, 0xb94e16de, 0xe883d0cb, 0x4e3c50a2 };
251
chacha_block(&r);
252
mi_assert_internal(array_equals(r.output, r_out, 16));
253
}
254
*/
255
256