Path: blob/master/keras/cnn_image_keras.ipynb
1470 views
Kernel: Python 3
Table of Contents
In [1]:
Out[1]:
In [2]:
Out[2]:
Using TensorFlow backend.
Ethen 2017-03-24 10:55:22
CPython 3.5.2
IPython 5.3.0
numpy 1.12.1
pandas 0.19.2
keras 2.0.2
Convolutional Network
In [3]:
Out[3]:
X_train shape: (60000, 28, 28)
60000 train samples
10000 test samples
In [4]:
Out[4]:
train shape: (60000, 28, 28, 1)
In [5]:
Out[5]:
y_train shape: (60000, 10)
The following code chunk takes A WHILE if you're running it on a laptop!!
In [6]:
Out[6]:
Train on 60000 samples, validate on 10000 samples
Epoch 1/12
60000/60000 [==============================] - 67s - loss: 0.9482 - acc: 0.7719 - val_loss: 0.3632 - val_acc: 0.8982
Epoch 2/12
60000/60000 [==============================] - 65s - loss: 0.3059 - acc: 0.9115 - val_loss: 0.2427 - val_acc: 0.9294
Epoch 3/12
60000/60000 [==============================] - 71s - loss: 0.2126 - acc: 0.9388 - val_loss: 0.1648 - val_acc: 0.9513
Epoch 4/12
60000/60000 [==============================] - 67s - loss: 0.1419 - acc: 0.9589 - val_loss: 0.1065 - val_acc: 0.9704
Epoch 5/12
60000/60000 [==============================] - 68s - loss: 0.0985 - acc: 0.9719 - val_loss: 0.0786 - val_acc: 0.9766
Epoch 6/12
60000/60000 [==============================] - 65s - loss: 0.0752 - acc: 0.9784 - val_loss: 0.0665 - val_acc: 0.9802
Epoch 7/12
60000/60000 [==============================] - 73s - loss: 0.0636 - acc: 0.9816 - val_loss: 0.0605 - val_acc: 0.9813
Epoch 8/12
60000/60000 [==============================] - 69s - loss: 0.0560 - acc: 0.9838 - val_loss: 0.0578 - val_acc: 0.9815
Epoch 9/12
60000/60000 [==============================] - 64s - loss: 0.0519 - acc: 0.9848 - val_loss: 0.0517 - val_acc: 0.9831
Epoch 10/12
60000/60000 [==============================] - 66s - loss: 0.0463 - acc: 0.9864 - val_loss: 0.0511 - val_acc: 0.9834
Epoch 11/12
60000/60000 [==============================] - 63s - loss: 0.0429 - acc: 0.9872 - val_loss: 0.0512 - val_acc: 0.9834
Epoch 12/12
60000/60000 [==============================] - 68s - loss: 0.0402 - acc: 0.9884 - val_loss: 0.0490 - val_acc: 0.9844
Test score: 0.0489532888404
Test accuracy: 0.9844