Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/cddl/contrib/opensolaris/common/ctf/ctf_open.c
39507 views
1
/*
2
* CDDL HEADER START
3
*
4
* The contents of this file are subject to the terms of the
5
* Common Development and Distribution License, Version 1.0 only
6
* (the "License"). You may not use this file except in compliance
7
* with the License.
8
*
9
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10
* or http://www.opensolaris.org/os/licensing.
11
* See the License for the specific language governing permissions
12
* and limitations under the License.
13
*
14
* When distributing Covered Code, include this CDDL HEADER in each
15
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16
* If applicable, add the following below this CDDL HEADER, with the
17
* fields enclosed by brackets "[]" replaced with your own identifying
18
* information: Portions Copyright [yyyy] [name of copyright owner]
19
*
20
* CDDL HEADER END
21
*/
22
23
/*
24
* Copyright 2006 Sun Microsystems, Inc. All rights reserved.
25
* Use is subject to license terms.
26
*/
27
/*
28
* Copyright (c) 2013, Joyent, Inc. All rights reserved.
29
*/
30
31
#include <ctf_impl.h>
32
#include <sys/mman.h>
33
#include <sys/zmod.h>
34
35
static const ctf_dmodel_t _libctf_models[] = {
36
{ "ILP32", CTF_MODEL_ILP32, 4, 1, 2, 4, 4 },
37
{ "LP64", CTF_MODEL_LP64, 8, 1, 2, 4, 8 },
38
{ NULL, 0, 0, 0, 0, 0, 0 }
39
};
40
41
const char _CTF_SECTION[] = ".SUNW_ctf";
42
const char _CTF_NULLSTR[] = "";
43
44
int _libctf_version = CTF_VERSION; /* library client version */
45
int _libctf_debug = 0; /* debugging messages enabled */
46
47
static uint_t
48
get_kind_v2(uint_t info)
49
{
50
return (CTF_V2_INFO_KIND((ushort_t)info));
51
}
52
53
static uint_t
54
get_root_v2(uint_t info)
55
{
56
return (CTF_V2_INFO_ISROOT((ushort_t)info));
57
}
58
59
static uint_t
60
get_vlen_v2(uint_t info)
61
{
62
return (CTF_V2_INFO_VLEN((ushort_t)info));
63
}
64
65
static uint_t
66
get_max_vlen_v2(void)
67
{
68
return (CTF_V2_MAX_VLEN);
69
}
70
71
static uint_t
72
get_max_size_v2(void)
73
{
74
return (CTF_V2_MAX_SIZE);
75
}
76
77
static uint_t
78
get_max_type_v2(void)
79
{
80
return (CTF_V2_MAX_TYPE);
81
}
82
83
static uint_t
84
get_lsize_sent_v2(void)
85
{
86
return (CTF_V2_LSIZE_SENT);
87
}
88
89
static uint_t
90
get_lstruct_thresh_v2(void)
91
{
92
return (CTF_V2_LSTRUCT_THRESH);
93
}
94
95
static uint_t
96
type_info_v2(uint_t kind, uint_t isroot, uint_t len)
97
{
98
return (CTF_V2_TYPE_INFO(kind, isroot, len));
99
}
100
101
static int
102
type_isparent_v2(uint_t id)
103
{
104
return (CTF_V2_TYPE_ISPARENT(id));
105
}
106
107
static int
108
type_ischild_v2(uint_t id)
109
{
110
return (CTF_V2_TYPE_ISCHILD(id));
111
}
112
113
static uint_t
114
type_to_index_v2(uint_t t)
115
{
116
return (CTF_V2_TYPE_TO_INDEX(t));
117
}
118
119
static uint_t
120
index_to_type_v2(uint_t id, uint_t child)
121
{
122
return (CTF_V2_INDEX_TO_TYPE(id, child));
123
}
124
125
static uint_t
126
get_kind_v3(uint_t info)
127
{
128
return (CTF_V3_INFO_KIND(info));
129
}
130
131
static uint_t
132
get_root_v3(uint_t info)
133
{
134
return (CTF_V3_INFO_ISROOT(info));
135
}
136
137
static uint_t
138
get_vlen_v3(uint_t info)
139
{
140
return (CTF_V3_INFO_VLEN(info));
141
}
142
143
static uint_t
144
get_max_vlen_v3(void)
145
{
146
return (CTF_V3_MAX_VLEN);
147
}
148
149
static uint_t
150
get_max_size_v3(void)
151
{
152
return (CTF_V3_MAX_SIZE);
153
}
154
155
static uint_t
156
get_max_type_v3(void)
157
{
158
return (CTF_V3_MAX_TYPE);
159
}
160
161
static uint_t
162
get_lsize_sent_v3(void)
163
{
164
return (CTF_V3_LSIZE_SENT);
165
}
166
167
static uint_t
168
get_lstruct_thresh_v3(void)
169
{
170
return (CTF_V3_LSTRUCT_THRESH);
171
}
172
173
static uint_t
174
type_info_v3(uint_t kind, uint_t isroot, uint_t len)
175
{
176
return (CTF_V3_TYPE_INFO(kind, isroot, len));
177
}
178
179
static int
180
type_isparent_v3(uint_t id)
181
{
182
return (CTF_V3_TYPE_ISPARENT(id));
183
}
184
185
static int
186
type_ischild_v3(uint_t id)
187
{
188
return (CTF_V3_TYPE_ISCHILD(id));
189
}
190
191
static uint_t
192
type_to_index_v3(uint_t t)
193
{
194
return (CTF_V3_TYPE_TO_INDEX(t));
195
}
196
197
static uint_t
198
index_to_type_v3(uint_t id, uint_t child)
199
{
200
return (CTF_V3_INDEX_TO_TYPE(id, child));
201
}
202
203
#define CTF_FILEOPS_ENTRY(v) \
204
{ \
205
.ctfo_get_kind = get_kind_v ## v, \
206
.ctfo_get_root = get_root_v ## v, \
207
.ctfo_get_vlen = get_vlen_v ## v, \
208
.ctfo_get_max_vlen = get_max_vlen_v ## v, \
209
.ctfo_get_max_size = get_max_size_v ## v, \
210
.ctfo_get_max_type = get_max_type_v ## v, \
211
.ctfo_get_lsize_sent = get_lsize_sent_v ## v, \
212
.ctfo_get_lstruct_thresh = get_lstruct_thresh_v ## v, \
213
.ctfo_type_info = type_info_v ## v, \
214
.ctfo_type_isparent = type_isparent_v ## v, \
215
.ctfo_type_ischild = type_ischild_v ## v, \
216
.ctfo_type_to_index = type_to_index_v ## v, \
217
.ctfo_index_to_type = index_to_type_v ## v \
218
}
219
220
static const ctf_fileops_t ctf_fileops[] = {
221
{ NULL, NULL },
222
{ NULL, NULL },
223
CTF_FILEOPS_ENTRY(2),
224
CTF_FILEOPS_ENTRY(3),
225
};
226
227
/*
228
* Convert a 32-bit ELF symbol into GElf (Elf64) and return a pointer to it.
229
*/
230
static Elf64_Sym *
231
sym_to_gelf(const Elf32_Sym *src, Elf64_Sym *dst)
232
{
233
dst->st_name = src->st_name;
234
dst->st_value = src->st_value;
235
dst->st_size = src->st_size;
236
dst->st_info = src->st_info;
237
dst->st_other = src->st_other;
238
dst->st_shndx = src->st_shndx;
239
240
return (dst);
241
}
242
243
/*
244
* Initialize the symtab translation table by filling each entry with the
245
* offset of the CTF type or function data corresponding to each STT_FUNC or
246
* STT_OBJECT entry in the symbol table.
247
*/
248
static int
249
init_symtab(ctf_file_t *fp, const ctf_header_t *hp,
250
const ctf_sect_t *sp, const ctf_sect_t *strp)
251
{
252
const uchar_t *symp = sp->cts_data;
253
uint_t *xp = fp->ctf_sxlate;
254
uint_t *xend = xp + fp->ctf_nsyms;
255
256
uint_t objtoff = hp->cth_objtoff;
257
uint_t funcoff = hp->cth_funcoff;
258
259
uint_t info, vlen;
260
261
Elf64_Sym sym, *gsp;
262
const char *name;
263
264
/*
265
* The CTF data object and function type sections are ordered to match
266
* the relative order of the respective symbol types in the symtab.
267
* If no type information is available for a symbol table entry, a
268
* pad is inserted in the CTF section. As a further optimization,
269
* anonymous or undefined symbols are omitted from the CTF data.
270
*/
271
for (; xp < xend; xp++, symp += sp->cts_entsize) {
272
if (sp->cts_entsize == sizeof (Elf32_Sym))
273
gsp = sym_to_gelf((Elf32_Sym *)(uintptr_t)symp, &sym);
274
else
275
gsp = (Elf64_Sym *)(uintptr_t)symp;
276
277
if (gsp->st_name < strp->cts_size)
278
name = (const char *)strp->cts_data + gsp->st_name;
279
else
280
name = _CTF_NULLSTR;
281
282
if (gsp->st_name == 0 || gsp->st_shndx == SHN_UNDEF ||
283
strcmp(name, "_START_") == 0 ||
284
strcmp(name, "_END_") == 0) {
285
*xp = -1u;
286
continue;
287
}
288
289
switch (ELF64_ST_TYPE(gsp->st_info)) {
290
case STT_OBJECT:
291
if (objtoff >= hp->cth_funcoff ||
292
(gsp->st_shndx == SHN_ABS && gsp->st_value == 0)) {
293
*xp = -1u;
294
break;
295
}
296
297
*xp = objtoff;
298
objtoff += fp->ctf_idwidth;
299
break;
300
301
case STT_FUNC:
302
if (funcoff >= hp->cth_typeoff) {
303
*xp = -1u;
304
break;
305
}
306
307
*xp = funcoff;
308
309
info = *(uint_t *)((uintptr_t)fp->ctf_buf + funcoff);
310
vlen = LCTF_INFO_VLEN(fp, info);
311
312
/*
313
* If we encounter a zero pad at the end, just skip it.
314
* Otherwise skip over the function and its return type
315
* (+2) and the argument list (vlen).
316
*/
317
if (LCTF_INFO_KIND(fp, info) == CTF_K_UNKNOWN &&
318
vlen == 0)
319
funcoff += fp->ctf_idwidth;
320
else
321
funcoff +=
322
roundup2(fp->ctf_idwidth * (vlen + 2), 4);
323
break;
324
325
default:
326
*xp = -1u;
327
break;
328
}
329
}
330
331
ctf_dprintf("loaded %lu symtab entries\n", fp->ctf_nsyms);
332
return (0);
333
}
334
335
/*
336
* Initialize the type ID translation table with the byte offset of each type,
337
* and initialize the hash tables of each named type.
338
*/
339
static int
340
init_types(ctf_file_t *fp, const ctf_header_t *cth)
341
{
342
const void *tbuf = (const void *)(fp->ctf_buf + cth->cth_typeoff);
343
const void *tend = (const void *)(fp->ctf_buf + cth->cth_stroff);
344
345
ulong_t pop[CTF_K_MAX + 1] = { 0 };
346
const void *tp;
347
ctf_hash_t *hp;
348
uint_t id, dst;
349
uint_t *xp;
350
351
/*
352
* We initially determine whether the container is a child or a parent
353
* based on the value of cth_parname. To support containers that pre-
354
* date cth_parname, we also scan the types themselves for references
355
* to values in the range reserved for child types in our first pass.
356
*/
357
int child = cth->cth_parname != 0;
358
int nlstructs = 0, nlunions = 0;
359
int err;
360
361
/*
362
* We make two passes through the entire type section. In this first
363
* pass, we count the number of each type and the total number of types.
364
*/
365
for (tp = tbuf; tp < tend; fp->ctf_typemax++) {
366
ssize_t size, increment;
367
368
size_t vbytes;
369
uint_t kind, n, type, vlen;
370
371
(void) ctf_get_ctt_size(fp, tp, &size, &increment);
372
ctf_get_ctt_info(fp, tp, &kind, &vlen, NULL);
373
ctf_get_ctt_index(fp, tp, NULL, &type, NULL);
374
375
switch (kind) {
376
case CTF_K_INTEGER:
377
case CTF_K_FLOAT:
378
vbytes = sizeof (uint_t);
379
break;
380
case CTF_K_ARRAY:
381
if (fp->ctf_version == CTF_VERSION_2)
382
vbytes = sizeof (struct ctf_array_v2);
383
else
384
vbytes = sizeof (struct ctf_array_v3);
385
break;
386
case CTF_K_FUNCTION:
387
vbytes = roundup2(fp->ctf_idwidth * vlen, 4);
388
break;
389
case CTF_K_STRUCT:
390
case CTF_K_UNION: {
391
size_t increment1;
392
uint_t type;
393
const void *mp =
394
(const void *)((uintptr_t)tp + increment);
395
396
vbytes = 0;
397
for (n = vlen; n != 0; n--, mp += increment1) {
398
ctf_get_ctm_info(fp, mp, size, &increment1, &type,
399
NULL, NULL);
400
child |= LCTF_TYPE_ISCHILD(fp, type);
401
vbytes += increment1;
402
}
403
break;
404
}
405
case CTF_K_ENUM:
406
vbytes = sizeof (ctf_enum_t) * vlen;
407
break;
408
case CTF_K_FORWARD:
409
/*
410
* For forward declarations, ctt_type is the CTF_K_*
411
* kind for the tag, so bump that population count too.
412
* If ctt_type is unknown, treat the tag as a struct.
413
*/
414
if (type == CTF_K_UNKNOWN || type >= CTF_K_MAX)
415
pop[CTF_K_STRUCT]++;
416
else
417
pop[type]++;
418
/*FALLTHRU*/
419
case CTF_K_UNKNOWN:
420
vbytes = 0;
421
break;
422
case CTF_K_POINTER:
423
case CTF_K_TYPEDEF:
424
case CTF_K_VOLATILE:
425
case CTF_K_CONST:
426
case CTF_K_RESTRICT:
427
child |= LCTF_TYPE_ISCHILD(fp, type);
428
vbytes = 0;
429
break;
430
default:
431
ctf_dprintf("detected invalid CTF kind -- %u\n", kind);
432
return (ECTF_CORRUPT);
433
}
434
tp = (const void *)((uintptr_t)tp + increment + vbytes);
435
pop[kind]++;
436
}
437
438
/*
439
* If we detected a reference to a child type ID, then we know this
440
* container is a child and may have a parent's types imported later.
441
*/
442
if (child) {
443
ctf_dprintf("CTF container %p is a child\n", (void *)fp);
444
fp->ctf_flags |= LCTF_CHILD;
445
} else
446
ctf_dprintf("CTF container %p is a parent\n", (void *)fp);
447
448
/*
449
* Now that we've counted up the number of each type, we can allocate
450
* the hash tables, type translation table, and pointer table.
451
*/
452
if ((err = ctf_hash_create(&fp->ctf_structs, pop[CTF_K_STRUCT])) != 0)
453
return (err);
454
455
if ((err = ctf_hash_create(&fp->ctf_unions, pop[CTF_K_UNION])) != 0)
456
return (err);
457
458
if ((err = ctf_hash_create(&fp->ctf_enums, pop[CTF_K_ENUM])) != 0)
459
return (err);
460
461
if ((err = ctf_hash_create(&fp->ctf_names,
462
pop[CTF_K_INTEGER] + pop[CTF_K_FLOAT] + pop[CTF_K_FUNCTION] +
463
pop[CTF_K_TYPEDEF] + pop[CTF_K_POINTER] + pop[CTF_K_VOLATILE] +
464
pop[CTF_K_CONST] + pop[CTF_K_RESTRICT])) != 0)
465
return (err);
466
467
fp->ctf_txlate = ctf_alloc(sizeof (uint_t) * (fp->ctf_typemax + 1));
468
fp->ctf_ptrtab = ctf_alloc(sizeof (uint_t) * (fp->ctf_typemax + 1));
469
470
if (fp->ctf_txlate == NULL || fp->ctf_ptrtab == NULL)
471
return (EAGAIN); /* memory allocation failed */
472
473
xp = fp->ctf_txlate;
474
*xp++ = 0; /* type id 0 is used as a sentinel value */
475
476
bzero(fp->ctf_txlate, sizeof (uint_t) * (fp->ctf_typemax + 1));
477
bzero(fp->ctf_ptrtab, sizeof (uint_t) * (fp->ctf_typemax + 1));
478
479
/*
480
* In the second pass through the types, we fill in each entry of the
481
* type and pointer tables and add names to the appropriate hashes.
482
*/
483
for (id = 1, tp = tbuf; tp < tend; xp++, id++) {
484
const struct ctf_type_v3 *ctt = tp;
485
uint_t kind, type, vlen;
486
ssize_t size, increment;
487
488
const char *name;
489
size_t vbytes;
490
ctf_helem_t *hep;
491
ctf_encoding_t cte;
492
493
(void) ctf_get_ctt_size(fp, tp, &size, &increment);
494
ctf_get_ctt_info(fp, tp, &kind, &vlen, NULL);
495
ctf_get_ctt_index(fp, tp, NULL, &type, NULL);
496
name = ctf_type_rname(fp, tp);
497
498
switch (kind) {
499
case CTF_K_INTEGER:
500
case CTF_K_FLOAT:
501
/*
502
* Only insert a new integer base type definition if
503
* this type name has not been defined yet. We re-use
504
* the names with different encodings for bit-fields.
505
*/
506
if ((hep = ctf_hash_lookup(&fp->ctf_names, fp,
507
name, strlen(name))) == NULL) {
508
err = ctf_hash_insert(&fp->ctf_names, fp,
509
LCTF_INDEX_TO_TYPE(fp, id, child),
510
ctt->ctt_name);
511
if (err != 0 && err != ECTF_STRTAB)
512
return (err);
513
} else if (ctf_type_encoding(fp, hep->h_type,
514
&cte) == 0 && cte.cte_bits == 0) {
515
/*
516
* Work-around SOS8 stabs bug: replace existing
517
* intrinsic w/ same name if it was zero bits.
518
*/
519
hep->h_type = LCTF_INDEX_TO_TYPE(fp, id, child);
520
}
521
vbytes = sizeof (uint_t);
522
break;
523
524
case CTF_K_ARRAY:
525
if (fp->ctf_version == CTF_VERSION_2)
526
vbytes = sizeof (struct ctf_array_v2);
527
else
528
vbytes = sizeof (struct ctf_array_v3);
529
break;
530
531
case CTF_K_FUNCTION:
532
err = ctf_hash_insert(&fp->ctf_names, fp,
533
LCTF_INDEX_TO_TYPE(fp, id, child), ctt->ctt_name);
534
if (err != 0 && err != ECTF_STRTAB)
535
return (err);
536
vbytes = roundup2(fp->ctf_idwidth * vlen, 4);
537
break;
538
539
case CTF_K_STRUCT:
540
err = ctf_hash_define(&fp->ctf_structs, fp,
541
LCTF_INDEX_TO_TYPE(fp, id, child), ctt->ctt_name);
542
543
if (err != 0 && err != ECTF_STRTAB)
544
return (err);
545
546
if (fp->ctf_version == CTF_VERSION_2) {
547
if (size < LCTF_LSTRUCT_THRESH(fp))
548
vbytes = sizeof (struct ctf_member_v2) *
549
vlen;
550
else {
551
vbytes =
552
sizeof (struct ctf_lmember_v2) *
553
vlen;
554
nlstructs++;
555
}
556
} else {
557
if (size < LCTF_LSTRUCT_THRESH(fp))
558
vbytes = sizeof (struct ctf_member_v3) *
559
vlen;
560
else {
561
vbytes =
562
sizeof (struct ctf_lmember_v3) *
563
vlen;
564
nlstructs++;
565
}
566
}
567
break;
568
569
case CTF_K_UNION:
570
err = ctf_hash_define(&fp->ctf_unions, fp,
571
LCTF_INDEX_TO_TYPE(fp, id, child), ctt->ctt_name);
572
573
if (err != 0 && err != ECTF_STRTAB)
574
return (err);
575
576
if (fp->ctf_version == CTF_VERSION_2) {
577
if (size < LCTF_LSTRUCT_THRESH(fp))
578
vbytes = sizeof (struct ctf_member_v2) *
579
vlen;
580
else {
581
vbytes =
582
sizeof (struct ctf_lmember_v2) *
583
vlen;
584
nlunions++;
585
}
586
} else {
587
if (size < LCTF_LSTRUCT_THRESH(fp))
588
vbytes = sizeof (struct ctf_member_v3) *
589
vlen;
590
else {
591
vbytes =
592
sizeof (struct ctf_lmember_v3) *
593
vlen;
594
nlunions++;
595
}
596
}
597
break;
598
599
case CTF_K_ENUM:
600
err = ctf_hash_define(&fp->ctf_enums, fp,
601
LCTF_INDEX_TO_TYPE(fp, id, child), ctt->ctt_name);
602
603
if (err != 0 && err != ECTF_STRTAB)
604
return (err);
605
606
vbytes = sizeof (ctf_enum_t) * vlen;
607
break;
608
609
case CTF_K_TYPEDEF:
610
err = ctf_hash_insert(&fp->ctf_names, fp,
611
LCTF_INDEX_TO_TYPE(fp, id, child), ctt->ctt_name);
612
if (err != 0 && err != ECTF_STRTAB)
613
return (err);
614
vbytes = 0;
615
break;
616
617
case CTF_K_FORWARD:
618
/*
619
* Only insert forward tags into the given hash if the
620
* type or tag name is not already present.
621
*/
622
switch (type) {
623
case CTF_K_STRUCT:
624
hp = &fp->ctf_structs;
625
break;
626
case CTF_K_UNION:
627
hp = &fp->ctf_unions;
628
break;
629
case CTF_K_ENUM:
630
hp = &fp->ctf_enums;
631
break;
632
default:
633
hp = &fp->ctf_structs;
634
}
635
636
if (ctf_hash_lookup(hp, fp,
637
name, strlen(name)) == NULL) {
638
err = ctf_hash_insert(hp, fp,
639
LCTF_INDEX_TO_TYPE(fp, id, child),
640
ctt->ctt_name);
641
if (err != 0 && err != ECTF_STRTAB)
642
return (err);
643
}
644
vbytes = 0;
645
break;
646
647
case CTF_K_POINTER:
648
/*
649
* If the type referenced by the pointer is in this CTF
650
* container, then store the index of the pointer type
651
* in fp->ctf_ptrtab[ index of referenced type ].
652
*/
653
if (LCTF_TYPE_ISCHILD(fp, type) == child &&
654
LCTF_TYPE_TO_INDEX(fp, type) <= fp->ctf_typemax)
655
fp->ctf_ptrtab[
656
LCTF_TYPE_TO_INDEX(fp, type)] = id;
657
/*FALLTHRU*/
658
659
case CTF_K_VOLATILE:
660
case CTF_K_CONST:
661
case CTF_K_RESTRICT:
662
err = ctf_hash_insert(&fp->ctf_names, fp,
663
LCTF_INDEX_TO_TYPE(fp, id, child), ctt->ctt_name);
664
if (err != 0 && err != ECTF_STRTAB)
665
return (err);
666
/*FALLTHRU*/
667
668
default:
669
vbytes = 0;
670
break;
671
}
672
673
*xp = (uint_t)((uintptr_t)tp - (uintptr_t)fp->ctf_buf);
674
tp = (const void *)((uintptr_t)tp + increment + vbytes);
675
}
676
677
ctf_dprintf("%lu total types processed\n", fp->ctf_typemax);
678
ctf_dprintf("%u enum names hashed\n", ctf_hash_size(&fp->ctf_enums));
679
ctf_dprintf("%u struct names hashed (%d long)\n",
680
ctf_hash_size(&fp->ctf_structs), nlstructs);
681
ctf_dprintf("%u union names hashed (%d long)\n",
682
ctf_hash_size(&fp->ctf_unions), nlunions);
683
ctf_dprintf("%u base type names hashed\n",
684
ctf_hash_size(&fp->ctf_names));
685
686
/*
687
* Make an additional pass through the pointer table to find pointers
688
* that point to anonymous typedef nodes. If we find one, modify the
689
* pointer table so that the pointer is also known to point to the
690
* node that is referenced by the anonymous typedef node.
691
*/
692
for (id = 1; id <= fp->ctf_typemax; id++) {
693
if ((dst = fp->ctf_ptrtab[id]) != 0) {
694
uint_t index, kind;
695
int ischild;
696
697
tp = LCTF_INDEX_TO_TYPEPTR(fp, id);
698
ctf_get_ctt_info(fp, tp, &kind, NULL, NULL);
699
ctf_get_ctt_index(fp, tp, &index, NULL, &ischild);
700
701
if (kind == CTF_K_TYPEDEF &&
702
strcmp(ctf_type_rname(fp, tp), "") == 0 &&
703
ischild == child && index <= fp->ctf_typemax)
704
fp->ctf_ptrtab[index] = dst;
705
}
706
}
707
708
return (0);
709
}
710
711
/*
712
* Decode the specified CTF buffer and optional symbol table and create a new
713
* CTF container representing the symbolic debugging information. This code
714
* can be used directly by the debugger, or it can be used as the engine for
715
* ctf_fdopen() or ctf_open(), below.
716
*/
717
ctf_file_t *
718
ctf_bufopen(const ctf_sect_t *ctfsect, const ctf_sect_t *symsect,
719
const ctf_sect_t *strsect, int *errp)
720
{
721
const ctf_preamble_t *pp;
722
ctf_header_t hp;
723
ctf_file_t *fp;
724
void *buf, *base;
725
size_t size, hdrsz;
726
int err;
727
728
if (ctfsect == NULL || ((symsect == NULL) != (strsect == NULL)))
729
return (ctf_set_open_errno(errp, EINVAL));
730
731
if (symsect != NULL && symsect->cts_entsize != sizeof (Elf32_Sym) &&
732
symsect->cts_entsize != sizeof (Elf64_Sym))
733
return (ctf_set_open_errno(errp, ECTF_SYMTAB));
734
735
if (symsect != NULL && symsect->cts_data == NULL)
736
return (ctf_set_open_errno(errp, ECTF_SYMBAD));
737
738
if (strsect != NULL && strsect->cts_data == NULL)
739
return (ctf_set_open_errno(errp, ECTF_STRBAD));
740
741
if (ctfsect->cts_size < sizeof (ctf_preamble_t))
742
return (ctf_set_open_errno(errp, ECTF_NOCTFBUF));
743
744
pp = (const ctf_preamble_t *)ctfsect->cts_data;
745
746
ctf_dprintf("ctf_bufopen: magic=0x%x version=%u\n",
747
pp->ctp_magic, pp->ctp_version);
748
749
/*
750
* Validate each part of the CTF header (either V1 or V2).
751
* First, we validate the preamble (common to all versions). At that
752
* point, we know specific header version, and can validate the
753
* version-specific parts including section offsets and alignments.
754
*/
755
if (pp->ctp_magic != CTF_MAGIC)
756
return (ctf_set_open_errno(errp, ECTF_NOCTFBUF));
757
758
if (pp->ctp_version == CTF_VERSION_2 ||
759
pp->ctp_version == CTF_VERSION_3) {
760
if (ctfsect->cts_size < sizeof (ctf_header_t))
761
return (ctf_set_open_errno(errp, ECTF_NOCTFBUF));
762
763
bcopy(ctfsect->cts_data, &hp, sizeof (hp));
764
hdrsz = sizeof (ctf_header_t);
765
766
} else
767
return (ctf_set_open_errno(errp, ECTF_CTFVERS));
768
769
size = hp.cth_stroff + hp.cth_strlen;
770
771
ctf_dprintf("ctf_bufopen: uncompressed size=%lu\n", (ulong_t)size);
772
773
if (hp.cth_lbloff > size || hp.cth_objtoff > size ||
774
hp.cth_funcoff > size || hp.cth_typeoff > size ||
775
hp.cth_stroff > size)
776
return (ctf_set_open_errno(errp, ECTF_CORRUPT));
777
778
if (hp.cth_lbloff > hp.cth_objtoff ||
779
hp.cth_objtoff > hp.cth_funcoff ||
780
hp.cth_funcoff > hp.cth_typeoff ||
781
hp.cth_typeoff > hp.cth_stroff)
782
return (ctf_set_open_errno(errp, ECTF_CORRUPT));
783
784
if ((hp.cth_lbloff & 3) || (hp.cth_objtoff & 1) ||
785
(hp.cth_funcoff & 1) || (hp.cth_typeoff & 3))
786
return (ctf_set_open_errno(errp, ECTF_CORRUPT));
787
788
/*
789
* Once everything is determined to be valid, attempt to decompress
790
* the CTF data buffer if it is compressed. Otherwise we just put
791
* the data section's buffer pointer into ctf_buf, below.
792
*/
793
if (hp.cth_flags & CTF_F_COMPRESS) {
794
size_t srclen, dstlen;
795
const void *src;
796
int rc = Z_OK;
797
798
if (ctf_zopen(errp) == NULL)
799
return (NULL); /* errp is set for us */
800
801
if ((base = ctf_data_alloc(size + hdrsz)) == MAP_FAILED)
802
return (ctf_set_open_errno(errp, ECTF_ZALLOC));
803
804
bcopy(ctfsect->cts_data, base, hdrsz);
805
((ctf_preamble_t *)base)->ctp_flags &= ~CTF_F_COMPRESS;
806
buf = (uchar_t *)base + hdrsz;
807
808
src = (uchar_t *)ctfsect->cts_data + hdrsz;
809
srclen = ctfsect->cts_size - hdrsz;
810
dstlen = size;
811
812
if ((rc = z_uncompress(buf, &dstlen, src, srclen)) != Z_OK) {
813
ctf_dprintf("zlib inflate err: %s\n", z_strerror(rc));
814
ctf_data_free(base, size + hdrsz);
815
return (ctf_set_open_errno(errp, ECTF_DECOMPRESS));
816
}
817
818
if (dstlen != size) {
819
ctf_dprintf("zlib inflate short -- got %lu of %lu "
820
"bytes\n", (ulong_t)dstlen, (ulong_t)size);
821
ctf_data_free(base, size + hdrsz);
822
return (ctf_set_open_errno(errp, ECTF_CORRUPT));
823
}
824
825
ctf_data_protect(base, size + hdrsz);
826
827
} else {
828
base = (void *)ctfsect->cts_data;
829
buf = (uchar_t *)base + hdrsz;
830
}
831
832
/*
833
* Once we have uncompressed and validated the CTF data buffer, we can
834
* proceed with allocating a ctf_file_t and initializing it.
835
*/
836
if ((fp = ctf_alloc(sizeof (ctf_file_t))) == NULL)
837
return (ctf_set_open_errno(errp, EAGAIN));
838
839
bzero(fp, sizeof (ctf_file_t));
840
fp->ctf_version = hp.cth_version;
841
fp->ctf_idwidth = fp->ctf_version == CTF_VERSION_2 ? 2 : 4;
842
fp->ctf_fileops = &ctf_fileops[hp.cth_version];
843
bcopy(ctfsect, &fp->ctf_data, sizeof (ctf_sect_t));
844
845
if (symsect != NULL) {
846
bcopy(symsect, &fp->ctf_symtab, sizeof (ctf_sect_t));
847
bcopy(strsect, &fp->ctf_strtab, sizeof (ctf_sect_t));
848
}
849
850
if (fp->ctf_data.cts_name != NULL)
851
fp->ctf_data.cts_name = ctf_strdup(fp->ctf_data.cts_name);
852
if (fp->ctf_symtab.cts_name != NULL)
853
fp->ctf_symtab.cts_name = ctf_strdup(fp->ctf_symtab.cts_name);
854
if (fp->ctf_strtab.cts_name != NULL)
855
fp->ctf_strtab.cts_name = ctf_strdup(fp->ctf_strtab.cts_name);
856
857
if (fp->ctf_data.cts_name == NULL)
858
fp->ctf_data.cts_name = _CTF_NULLSTR;
859
if (fp->ctf_symtab.cts_name == NULL)
860
fp->ctf_symtab.cts_name = _CTF_NULLSTR;
861
if (fp->ctf_strtab.cts_name == NULL)
862
fp->ctf_strtab.cts_name = _CTF_NULLSTR;
863
864
fp->ctf_str[CTF_STRTAB_0].cts_strs = (const char *)buf + hp.cth_stroff;
865
fp->ctf_str[CTF_STRTAB_0].cts_len = hp.cth_strlen;
866
867
if (strsect != NULL) {
868
fp->ctf_str[CTF_STRTAB_1].cts_strs = strsect->cts_data;
869
fp->ctf_str[CTF_STRTAB_1].cts_len = strsect->cts_size;
870
}
871
872
fp->ctf_base = base;
873
fp->ctf_buf = buf;
874
fp->ctf_size = size + hdrsz;
875
876
/*
877
* If we have a parent container name and label, store the relocated
878
* string pointers in the CTF container for easy access later.
879
*/
880
if (hp.cth_parlabel != 0)
881
fp->ctf_parlabel = ctf_strptr(fp, hp.cth_parlabel);
882
if (hp.cth_parname != 0)
883
fp->ctf_parname = ctf_strptr(fp, hp.cth_parname);
884
885
ctf_dprintf("ctf_bufopen: parent name %s (label %s)\n",
886
fp->ctf_parname ? fp->ctf_parname : "<NULL>",
887
fp->ctf_parlabel ? fp->ctf_parlabel : "<NULL>");
888
889
/*
890
* If we have a symbol table section, allocate and initialize
891
* the symtab translation table, pointed to by ctf_sxlate.
892
*/
893
if (symsect != NULL) {
894
fp->ctf_nsyms = symsect->cts_size / symsect->cts_entsize;
895
fp->ctf_sxlate = ctf_alloc(fp->ctf_nsyms * sizeof (uint_t));
896
897
if (fp->ctf_sxlate == NULL) {
898
(void) ctf_set_open_errno(errp, EAGAIN);
899
goto bad;
900
}
901
902
if ((err = init_symtab(fp, &hp, symsect, strsect)) != 0) {
903
(void) ctf_set_open_errno(errp, err);
904
goto bad;
905
}
906
}
907
908
if ((err = init_types(fp, &hp)) != 0) {
909
(void) ctf_set_open_errno(errp, err);
910
goto bad;
911
}
912
913
/*
914
* Initialize the ctf_lookup_by_name top-level dictionary. We keep an
915
* array of type name prefixes and the corresponding ctf_hash to use.
916
* NOTE: This code must be kept in sync with the code in ctf_update().
917
*/
918
fp->ctf_lookups[0].ctl_prefix = "struct";
919
fp->ctf_lookups[0].ctl_len = strlen(fp->ctf_lookups[0].ctl_prefix);
920
fp->ctf_lookups[0].ctl_hash = &fp->ctf_structs;
921
fp->ctf_lookups[1].ctl_prefix = "union";
922
fp->ctf_lookups[1].ctl_len = strlen(fp->ctf_lookups[1].ctl_prefix);
923
fp->ctf_lookups[1].ctl_hash = &fp->ctf_unions;
924
fp->ctf_lookups[2].ctl_prefix = "enum";
925
fp->ctf_lookups[2].ctl_len = strlen(fp->ctf_lookups[2].ctl_prefix);
926
fp->ctf_lookups[2].ctl_hash = &fp->ctf_enums;
927
fp->ctf_lookups[3].ctl_prefix = _CTF_NULLSTR;
928
fp->ctf_lookups[3].ctl_len = strlen(fp->ctf_lookups[3].ctl_prefix);
929
fp->ctf_lookups[3].ctl_hash = &fp->ctf_names;
930
fp->ctf_lookups[4].ctl_prefix = NULL;
931
fp->ctf_lookups[4].ctl_len = 0;
932
fp->ctf_lookups[4].ctl_hash = NULL;
933
934
if (symsect != NULL) {
935
if (symsect->cts_entsize == sizeof (Elf64_Sym))
936
(void) ctf_setmodel(fp, CTF_MODEL_LP64);
937
else
938
(void) ctf_setmodel(fp, CTF_MODEL_ILP32);
939
} else
940
(void) ctf_setmodel(fp, CTF_MODEL_NATIVE);
941
942
fp->ctf_refcnt = 1;
943
return (fp);
944
945
bad:
946
ctf_close(fp);
947
return (NULL);
948
}
949
950
/*
951
* Dupliate a ctf_file_t and its underlying section information into a new
952
* container. This works by copying the three ctf_sect_t's of the original
953
* container if they exist and passing those into ctf_bufopen. To copy those, we
954
* mmap anonymous memory with ctf_data_alloc and bcopy the data across. It's not
955
* the cheapest thing, but it's what we've got.
956
*/
957
ctf_file_t *
958
ctf_dup(ctf_file_t *ofp)
959
{
960
ctf_file_t *fp;
961
ctf_sect_t ctfsect, symsect, strsect;
962
ctf_sect_t *ctp, *symp, *strp;
963
void *cbuf, *symbuf, *strbuf;
964
int err;
965
966
cbuf = symbuf = strbuf = NULL;
967
/*
968
* The ctfsect isn't allowed to not exist, but the symbol and string
969
* section might not. We only need to copy the data of the section, not
970
* the name, as ctf_bufopen will take care of that.
971
*/
972
bcopy(&ofp->ctf_data, &ctfsect, sizeof (ctf_sect_t));
973
cbuf = ctf_data_alloc(ctfsect.cts_size);
974
if (cbuf == NULL) {
975
(void) ctf_set_errno(ofp, ECTF_MMAP);
976
return (NULL);
977
}
978
979
bcopy(ctfsect.cts_data, cbuf, ctfsect.cts_size);
980
ctf_data_protect(cbuf, ctfsect.cts_size);
981
ctfsect.cts_data = cbuf;
982
ctfsect.cts_offset = 0;
983
ctp = &ctfsect;
984
985
if (ofp->ctf_symtab.cts_data != NULL) {
986
bcopy(&ofp->ctf_symtab, &symsect, sizeof (ctf_sect_t));
987
symbuf = ctf_data_alloc(symsect.cts_size);
988
if (symbuf == NULL) {
989
(void) ctf_set_errno(ofp, ECTF_MMAP);
990
goto err;
991
}
992
bcopy(symsect.cts_data, symbuf, symsect.cts_size);
993
ctf_data_protect(symbuf, symsect.cts_size);
994
symsect.cts_data = symbuf;
995
symsect.cts_offset = 0;
996
symp = &symsect;
997
} else {
998
symp = NULL;
999
}
1000
1001
if (ofp->ctf_strtab.cts_data != NULL) {
1002
bcopy(&ofp->ctf_strtab, &strsect, sizeof (ctf_sect_t));
1003
strbuf = ctf_data_alloc(strsect.cts_size);
1004
if (strbuf == NULL) {
1005
(void) ctf_set_errno(ofp, ECTF_MMAP);
1006
goto err;
1007
}
1008
bcopy(strsect.cts_data, strbuf, strsect.cts_size);
1009
ctf_data_protect(strbuf, strsect.cts_size);
1010
strsect.cts_data = strbuf;
1011
strsect.cts_offset = 0;
1012
strp = &strsect;
1013
} else {
1014
strp = NULL;
1015
}
1016
1017
fp = ctf_bufopen(ctp, symp, strp, &err);
1018
if (fp == NULL) {
1019
(void) ctf_set_errno(ofp, err);
1020
goto err;
1021
}
1022
1023
fp->ctf_flags |= LCTF_MMAP;
1024
1025
return (fp);
1026
1027
err:
1028
ctf_data_free(cbuf, ctfsect.cts_size);
1029
if (symbuf != NULL)
1030
ctf_data_free(symbuf, symsect.cts_size);
1031
if (strbuf != NULL)
1032
ctf_data_free(strbuf, strsect.cts_size);
1033
return (NULL);
1034
}
1035
1036
/*
1037
* Close the specified CTF container and free associated data structures. Note
1038
* that ctf_close() is a reference counted operation: if the specified file is
1039
* the parent of other active containers, its reference count will be greater
1040
* than one and it will be freed later when no active children exist.
1041
*/
1042
void
1043
ctf_close(ctf_file_t *fp)
1044
{
1045
ctf_dtdef_t *dtd, *ntd;
1046
1047
if (fp == NULL)
1048
return; /* allow ctf_close(NULL) to simplify caller code */
1049
1050
ctf_dprintf("ctf_close(%p) refcnt=%u\n", (void *)fp, fp->ctf_refcnt);
1051
1052
if (fp->ctf_refcnt > 1) {
1053
fp->ctf_refcnt--;
1054
return;
1055
}
1056
1057
if (fp->ctf_parent != NULL)
1058
ctf_close(fp->ctf_parent);
1059
1060
/*
1061
* Note, to work properly with reference counting on the dynamic
1062
* section, we must delete the list in reverse.
1063
*/
1064
for (dtd = ctf_list_prev(&fp->ctf_dtdefs); dtd != NULL; dtd = ntd) {
1065
ntd = ctf_list_prev(dtd);
1066
ctf_dtd_delete(fp, dtd);
1067
}
1068
1069
ctf_free(fp->ctf_dthash, fp->ctf_dthashlen * sizeof (ctf_dtdef_t *));
1070
1071
if (fp->ctf_flags & LCTF_MMAP) {
1072
if (fp->ctf_data.cts_data != NULL)
1073
ctf_sect_munmap(&fp->ctf_data);
1074
if (fp->ctf_symtab.cts_data != NULL)
1075
ctf_sect_munmap(&fp->ctf_symtab);
1076
if (fp->ctf_strtab.cts_data != NULL)
1077
ctf_sect_munmap(&fp->ctf_strtab);
1078
}
1079
1080
if (fp->ctf_data.cts_name != _CTF_NULLSTR &&
1081
fp->ctf_data.cts_name != NULL) {
1082
ctf_free((char *)fp->ctf_data.cts_name,
1083
strlen(fp->ctf_data.cts_name) + 1);
1084
}
1085
1086
if (fp->ctf_symtab.cts_name != _CTF_NULLSTR &&
1087
fp->ctf_symtab.cts_name != NULL) {
1088
ctf_free((char *)fp->ctf_symtab.cts_name,
1089
strlen(fp->ctf_symtab.cts_name) + 1);
1090
}
1091
1092
if (fp->ctf_strtab.cts_name != _CTF_NULLSTR &&
1093
fp->ctf_strtab.cts_name != NULL) {
1094
ctf_free((char *)fp->ctf_strtab.cts_name,
1095
strlen(fp->ctf_strtab.cts_name) + 1);
1096
}
1097
1098
if (fp->ctf_base != fp->ctf_data.cts_data && fp->ctf_base != NULL)
1099
ctf_data_free((void *)fp->ctf_base, fp->ctf_size);
1100
1101
if (fp->ctf_sxlate != NULL)
1102
ctf_free(fp->ctf_sxlate, sizeof (uint_t) * fp->ctf_nsyms);
1103
1104
if (fp->ctf_txlate != NULL) {
1105
ctf_free(fp->ctf_txlate,
1106
sizeof (uint_t) * (fp->ctf_typemax + 1));
1107
}
1108
1109
if (fp->ctf_ptrtab != NULL) {
1110
ctf_free(fp->ctf_ptrtab,
1111
sizeof (uint_t) * (fp->ctf_typemax + 1));
1112
}
1113
1114
ctf_hash_destroy(&fp->ctf_structs);
1115
ctf_hash_destroy(&fp->ctf_unions);
1116
ctf_hash_destroy(&fp->ctf_enums);
1117
ctf_hash_destroy(&fp->ctf_names);
1118
1119
ctf_free(fp, sizeof (ctf_file_t));
1120
}
1121
1122
/*
1123
* Return the CTF handle for the parent CTF container, if one exists.
1124
* Otherwise return NULL to indicate this container has no imported parent.
1125
*/
1126
ctf_file_t *
1127
ctf_parent_file(ctf_file_t *fp)
1128
{
1129
return (fp->ctf_parent);
1130
}
1131
1132
/*
1133
* Return the name of the parent CTF container, if one exists. Otherwise
1134
* return NULL to indicate this container is a root container.
1135
*/
1136
const char *
1137
ctf_parent_name(ctf_file_t *fp)
1138
{
1139
return (fp->ctf_parname);
1140
}
1141
1142
/*
1143
* Import the types from the specified parent container by storing a pointer
1144
* to it in ctf_parent and incrementing its reference count. Only one parent
1145
* is allowed: if a parent already exists, it is replaced by the new parent.
1146
*/
1147
int
1148
ctf_import(ctf_file_t *fp, ctf_file_t *pfp)
1149
{
1150
if (fp == NULL || fp == pfp || (pfp != NULL && pfp->ctf_refcnt == 0))
1151
return (ctf_set_errno(fp, EINVAL));
1152
1153
if (pfp != NULL && pfp->ctf_dmodel != fp->ctf_dmodel)
1154
return (ctf_set_errno(fp, ECTF_DMODEL));
1155
1156
if (fp->ctf_parent != NULL)
1157
ctf_close(fp->ctf_parent);
1158
1159
if (pfp != NULL) {
1160
fp->ctf_flags |= LCTF_CHILD;
1161
pfp->ctf_refcnt++;
1162
}
1163
1164
fp->ctf_parent = pfp;
1165
return (0);
1166
}
1167
1168
/*
1169
* Set the data model constant for the CTF container.
1170
*/
1171
int
1172
ctf_setmodel(ctf_file_t *fp, int model)
1173
{
1174
const ctf_dmodel_t *dp;
1175
1176
for (dp = _libctf_models; dp->ctd_name != NULL; dp++) {
1177
if (dp->ctd_code == model) {
1178
fp->ctf_dmodel = dp;
1179
return (0);
1180
}
1181
}
1182
1183
return (ctf_set_errno(fp, EINVAL));
1184
}
1185
1186
/*
1187
* Return the data model constant for the CTF container.
1188
*/
1189
int
1190
ctf_getmodel(ctf_file_t *fp)
1191
{
1192
return (fp->ctf_dmodel->ctd_code);
1193
}
1194
1195
void
1196
ctf_setspecific(ctf_file_t *fp, void *data)
1197
{
1198
fp->ctf_specific = data;
1199
}
1200
1201
void *
1202
ctf_getspecific(ctf_file_t *fp)
1203
{
1204
return (fp->ctf_specific);
1205
}
1206
1207