Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/cddl/contrib/opensolaris/lib/libdtrace/common/dt_aggregate.c
39562 views
1
/*
2
* CDDL HEADER START
3
*
4
* The contents of this file are subject to the terms of the
5
* Common Development and Distribution License (the "License").
6
* You may not use this file except in compliance with the License.
7
*
8
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9
* or http://www.opensolaris.org/os/licensing.
10
* See the License for the specific language governing permissions
11
* and limitations under the License.
12
*
13
* When distributing Covered Code, include this CDDL HEADER in each
14
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15
* If applicable, add the following below this CDDL HEADER, with the
16
* fields enclosed by brackets "[]" replaced with your own identifying
17
* information: Portions Copyright [yyyy] [name of copyright owner]
18
*
19
* CDDL HEADER END
20
*/
21
22
/*
23
* Copyright 2008 Sun Microsystems, Inc. All rights reserved.
24
* Use is subject to license terms.
25
*/
26
27
/*
28
* Copyright (c) 2013, Joyent, Inc. All rights reserved.
29
* Copyright (c) 2012 by Delphix. All rights reserved.
30
*/
31
32
#include <stdlib.h>
33
#include <strings.h>
34
#include <errno.h>
35
#include <unistd.h>
36
#include <dt_impl.h>
37
#include <assert.h>
38
#include <dt_oformat.h>
39
#ifdef illumos
40
#include <alloca.h>
41
#else
42
#include <sys/sysctl.h>
43
#include <libproc_compat.h>
44
#endif
45
#include <limits.h>
46
47
#define DTRACE_AHASHSIZE 32779 /* big 'ol prime */
48
49
/*
50
* Because qsort(3C) does not allow an argument to be passed to a comparison
51
* function, the variables that affect comparison must regrettably be global;
52
* they are protected by a global static lock, dt_qsort_lock.
53
*/
54
static pthread_mutex_t dt_qsort_lock = PTHREAD_MUTEX_INITIALIZER;
55
56
static int dt_revsort;
57
static int dt_keysort;
58
static int dt_keypos;
59
60
#define DT_LESSTHAN (dt_revsort == 0 ? -1 : 1)
61
#define DT_GREATERTHAN (dt_revsort == 0 ? 1 : -1)
62
63
static void
64
dt_aggregate_count(int64_t *existing, int64_t *new, size_t size)
65
{
66
uint_t i;
67
68
for (i = 0; i < size / sizeof (int64_t); i++)
69
existing[i] = existing[i] + new[i];
70
}
71
72
static int
73
dt_aggregate_countcmp(int64_t *lhs, int64_t *rhs)
74
{
75
int64_t lvar = *lhs;
76
int64_t rvar = *rhs;
77
78
if (lvar < rvar)
79
return (DT_LESSTHAN);
80
81
if (lvar > rvar)
82
return (DT_GREATERTHAN);
83
84
return (0);
85
}
86
87
/*ARGSUSED*/
88
static void
89
dt_aggregate_min(int64_t *existing, int64_t *new, size_t size)
90
{
91
if (*new < *existing)
92
*existing = *new;
93
}
94
95
/*ARGSUSED*/
96
static void
97
dt_aggregate_max(int64_t *existing, int64_t *new, size_t size)
98
{
99
if (*new > *existing)
100
*existing = *new;
101
}
102
103
static int
104
dt_aggregate_averagecmp(int64_t *lhs, int64_t *rhs)
105
{
106
int64_t lavg = lhs[0] ? (lhs[1] / lhs[0]) : 0;
107
int64_t ravg = rhs[0] ? (rhs[1] / rhs[0]) : 0;
108
109
if (lavg < ravg)
110
return (DT_LESSTHAN);
111
112
if (lavg > ravg)
113
return (DT_GREATERTHAN);
114
115
return (0);
116
}
117
118
static int
119
dt_aggregate_stddevcmp(int64_t *lhs, int64_t *rhs)
120
{
121
uint64_t lsd = dt_stddev((uint64_t *)lhs, 1);
122
uint64_t rsd = dt_stddev((uint64_t *)rhs, 1);
123
124
if (lsd < rsd)
125
return (DT_LESSTHAN);
126
127
if (lsd > rsd)
128
return (DT_GREATERTHAN);
129
130
return (0);
131
}
132
133
/*ARGSUSED*/
134
static void
135
dt_aggregate_lquantize(int64_t *existing, int64_t *new, size_t size)
136
{
137
int64_t arg = *existing++;
138
uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg);
139
int i;
140
141
for (i = 0; i <= levels + 1; i++)
142
existing[i] = existing[i] + new[i + 1];
143
}
144
145
static long double
146
dt_aggregate_lquantizedsum(int64_t *lquanta)
147
{
148
int64_t arg = *lquanta++;
149
int32_t base = DTRACE_LQUANTIZE_BASE(arg);
150
uint16_t step = DTRACE_LQUANTIZE_STEP(arg);
151
uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg), i;
152
long double total = (long double)lquanta[0] * (long double)(base - 1);
153
154
for (i = 0; i < levels; base += step, i++)
155
total += (long double)lquanta[i + 1] * (long double)base;
156
157
return (total + (long double)lquanta[levels + 1] *
158
(long double)(base + 1));
159
}
160
161
static int64_t
162
dt_aggregate_lquantizedzero(int64_t *lquanta)
163
{
164
int64_t arg = *lquanta++;
165
int32_t base = DTRACE_LQUANTIZE_BASE(arg);
166
uint16_t step = DTRACE_LQUANTIZE_STEP(arg);
167
uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg), i;
168
169
if (base - 1 == 0)
170
return (lquanta[0]);
171
172
for (i = 0; i < levels; base += step, i++) {
173
if (base != 0)
174
continue;
175
176
return (lquanta[i + 1]);
177
}
178
179
if (base + 1 == 0)
180
return (lquanta[levels + 1]);
181
182
return (0);
183
}
184
185
static int
186
dt_aggregate_lquantizedcmp(int64_t *lhs, int64_t *rhs)
187
{
188
long double lsum = dt_aggregate_lquantizedsum(lhs);
189
long double rsum = dt_aggregate_lquantizedsum(rhs);
190
int64_t lzero, rzero;
191
192
if (lsum < rsum)
193
return (DT_LESSTHAN);
194
195
if (lsum > rsum)
196
return (DT_GREATERTHAN);
197
198
/*
199
* If they're both equal, then we will compare based on the weights at
200
* zero. If the weights at zero are equal (or if zero is not within
201
* the range of the linear quantization), then this will be judged a
202
* tie and will be resolved based on the key comparison.
203
*/
204
lzero = dt_aggregate_lquantizedzero(lhs);
205
rzero = dt_aggregate_lquantizedzero(rhs);
206
207
if (lzero < rzero)
208
return (DT_LESSTHAN);
209
210
if (lzero > rzero)
211
return (DT_GREATERTHAN);
212
213
return (0);
214
}
215
216
static void
217
dt_aggregate_llquantize(int64_t *existing, int64_t *new, size_t size)
218
{
219
int i;
220
221
for (i = 1; i < size / sizeof (int64_t); i++)
222
existing[i] = existing[i] + new[i];
223
}
224
225
static long double
226
dt_aggregate_llquantizedsum(int64_t *llquanta)
227
{
228
int64_t arg = *llquanta++;
229
uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(arg);
230
uint16_t low = DTRACE_LLQUANTIZE_LOW(arg);
231
uint16_t high = DTRACE_LLQUANTIZE_HIGH(arg);
232
uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(arg);
233
int bin = 0, order;
234
int64_t value = 1, next, step;
235
long double total;
236
237
assert(nsteps >= factor);
238
assert(nsteps % factor == 0);
239
240
for (order = 0; order < low; order++)
241
value *= factor;
242
243
total = (long double)llquanta[bin++] * (long double)(value - 1);
244
245
next = value * factor;
246
step = next > nsteps ? next / nsteps : 1;
247
248
while (order <= high) {
249
assert(value < next);
250
total += (long double)llquanta[bin++] * (long double)(value);
251
252
if ((value += step) != next)
253
continue;
254
255
next = value * factor;
256
step = next > nsteps ? next / nsteps : 1;
257
order++;
258
}
259
260
return (total + (long double)llquanta[bin] * (long double)value);
261
}
262
263
static int
264
dt_aggregate_llquantizedcmp(int64_t *lhs, int64_t *rhs)
265
{
266
long double lsum = dt_aggregate_llquantizedsum(lhs);
267
long double rsum = dt_aggregate_llquantizedsum(rhs);
268
int64_t lzero, rzero;
269
270
if (lsum < rsum)
271
return (DT_LESSTHAN);
272
273
if (lsum > rsum)
274
return (DT_GREATERTHAN);
275
276
/*
277
* If they're both equal, then we will compare based on the weights at
278
* zero. If the weights at zero are equal, then this will be judged a
279
* tie and will be resolved based on the key comparison.
280
*/
281
lzero = lhs[1];
282
rzero = rhs[1];
283
284
if (lzero < rzero)
285
return (DT_LESSTHAN);
286
287
if (lzero > rzero)
288
return (DT_GREATERTHAN);
289
290
return (0);
291
}
292
293
static int
294
dt_aggregate_quantizedcmp(int64_t *lhs, int64_t *rhs)
295
{
296
int nbuckets = DTRACE_QUANTIZE_NBUCKETS;
297
long double ltotal = 0, rtotal = 0;
298
int64_t lzero, rzero;
299
uint_t i;
300
301
for (i = 0; i < nbuckets; i++) {
302
int64_t bucketval = DTRACE_QUANTIZE_BUCKETVAL(i);
303
304
if (bucketval == 0) {
305
lzero = lhs[i];
306
rzero = rhs[i];
307
}
308
309
ltotal += (long double)bucketval * (long double)lhs[i];
310
rtotal += (long double)bucketval * (long double)rhs[i];
311
}
312
313
if (ltotal < rtotal)
314
return (DT_LESSTHAN);
315
316
if (ltotal > rtotal)
317
return (DT_GREATERTHAN);
318
319
/*
320
* If they're both equal, then we will compare based on the weights at
321
* zero. If the weights at zero are equal, then this will be judged a
322
* tie and will be resolved based on the key comparison.
323
*/
324
if (lzero < rzero)
325
return (DT_LESSTHAN);
326
327
if (lzero > rzero)
328
return (DT_GREATERTHAN);
329
330
return (0);
331
}
332
333
static void
334
dt_aggregate_usym(dtrace_hdl_t *dtp, uint64_t *data)
335
{
336
uint64_t pid = data[0];
337
uint64_t *pc = &data[1];
338
struct ps_prochandle *P;
339
GElf_Sym sym;
340
341
if (dtp->dt_vector != NULL)
342
return;
343
344
if ((P = dt_proc_grab(dtp, pid, PGRAB_RDONLY | PGRAB_FORCE, 0)) == NULL)
345
return;
346
347
dt_proc_lock(dtp, P);
348
349
if (Plookup_by_addr(P, *pc, NULL, 0, &sym) == 0)
350
*pc = sym.st_value;
351
352
dt_proc_unlock(dtp, P);
353
dt_proc_release(dtp, P);
354
}
355
356
static void
357
dt_aggregate_umod(dtrace_hdl_t *dtp, uint64_t *data)
358
{
359
uint64_t pid = data[0];
360
uint64_t *pc = &data[1];
361
struct ps_prochandle *P;
362
const prmap_t *map;
363
364
if (dtp->dt_vector != NULL)
365
return;
366
367
if ((P = dt_proc_grab(dtp, pid, PGRAB_RDONLY | PGRAB_FORCE, 0)) == NULL)
368
return;
369
370
dt_proc_lock(dtp, P);
371
372
if ((map = Paddr_to_map(P, *pc)) != NULL)
373
*pc = map->pr_vaddr;
374
375
dt_proc_unlock(dtp, P);
376
dt_proc_release(dtp, P);
377
}
378
379
static void
380
dt_aggregate_sym(dtrace_hdl_t *dtp, uint64_t *data)
381
{
382
GElf_Sym sym;
383
uint64_t *pc = data;
384
385
if (dtrace_lookup_by_addr(dtp, *pc, &sym, NULL) == 0)
386
*pc = sym.st_value;
387
}
388
389
static void
390
dt_aggregate_mod(dtrace_hdl_t *dtp, uint64_t *data)
391
{
392
uint64_t *pc = data;
393
dt_module_t *dmp;
394
395
if (dtp->dt_vector != NULL) {
396
/*
397
* We don't have a way of just getting the module for a
398
* vectored open, and it doesn't seem to be worth defining
399
* one. This means that use of mod() won't get true
400
* aggregation in the postmortem case (some modules may
401
* appear more than once in aggregation output). It seems
402
* unlikely that anyone will ever notice or care...
403
*/
404
return;
405
}
406
407
for (dmp = dt_list_next(&dtp->dt_modlist); dmp != NULL;
408
dmp = dt_list_next(dmp)) {
409
if (*pc - dmp->dm_text_va < dmp->dm_text_size) {
410
*pc = dmp->dm_text_va;
411
return;
412
}
413
}
414
}
415
416
static dtrace_aggvarid_t
417
dt_aggregate_aggvarid(dt_ahashent_t *ent)
418
{
419
dtrace_aggdesc_t *agg = ent->dtahe_data.dtada_desc;
420
caddr_t data = ent->dtahe_data.dtada_data;
421
dtrace_recdesc_t *rec = agg->dtagd_rec;
422
423
/*
424
* First, we'll check the variable ID in the aggdesc. If it's valid,
425
* we'll return it. If not, we'll use the compiler-generated ID
426
* present as the first record.
427
*/
428
if (agg->dtagd_varid != DTRACE_AGGVARIDNONE)
429
return (agg->dtagd_varid);
430
431
agg->dtagd_varid = *((dtrace_aggvarid_t *)(uintptr_t)(data +
432
rec->dtrd_offset));
433
434
return (agg->dtagd_varid);
435
}
436
437
438
static int
439
dt_aggregate_snap_cpu(dtrace_hdl_t *dtp, processorid_t cpu)
440
{
441
dtrace_epid_t id;
442
uint64_t hashval;
443
size_t offs, roffs, size, ndx;
444
int i, j, rval;
445
caddr_t addr, data;
446
dtrace_recdesc_t *rec;
447
dt_aggregate_t *agp = &dtp->dt_aggregate;
448
dtrace_aggdesc_t *agg;
449
dt_ahash_t *hash = &agp->dtat_hash;
450
dt_ahashent_t *h;
451
dtrace_bufdesc_t b = agp->dtat_buf, *buf = &b;
452
dtrace_aggdata_t *aggdata;
453
int flags = agp->dtat_flags;
454
455
buf->dtbd_cpu = cpu;
456
457
#ifdef illumos
458
if (dt_ioctl(dtp, DTRACEIOC_AGGSNAP, buf) == -1) {
459
#else
460
if (dt_ioctl(dtp, DTRACEIOC_AGGSNAP, &buf) == -1) {
461
#endif
462
if (errno == ENOENT) {
463
/*
464
* If that failed with ENOENT, it may be because the
465
* CPU was unconfigured. This is okay; we'll just
466
* do nothing but return success.
467
*/
468
return (0);
469
}
470
471
return (dt_set_errno(dtp, errno));
472
}
473
474
if (buf->dtbd_drops != 0) {
475
int error;
476
477
if (dtp->dt_oformat) {
478
xo_open_instance("probes");
479
dt_oformat_drop(dtp, cpu);
480
}
481
error = dt_handle_cpudrop(dtp, cpu, DTRACEDROP_AGGREGATION,
482
buf->dtbd_drops);
483
if (dtp->dt_oformat)
484
xo_close_instance("probes");
485
if (error != 0)
486
return (-1);
487
}
488
489
if (buf->dtbd_size == 0)
490
return (0);
491
492
if (hash->dtah_hash == NULL) {
493
size_t size;
494
495
hash->dtah_size = DTRACE_AHASHSIZE;
496
size = hash->dtah_size * sizeof (dt_ahashent_t *);
497
498
if ((hash->dtah_hash = malloc(size)) == NULL)
499
return (dt_set_errno(dtp, EDT_NOMEM));
500
501
bzero(hash->dtah_hash, size);
502
}
503
504
for (offs = 0; offs < buf->dtbd_size; ) {
505
/*
506
* We're guaranteed to have an ID.
507
*/
508
id = *((dtrace_epid_t *)((uintptr_t)buf->dtbd_data +
509
(uintptr_t)offs));
510
511
if (id == DTRACE_AGGIDNONE) {
512
/*
513
* This is filler to assure proper alignment of the
514
* next record; we simply ignore it.
515
*/
516
offs += sizeof (id);
517
continue;
518
}
519
520
if ((rval = dt_aggid_lookup(dtp, id, &agg)) != 0)
521
return (rval);
522
523
addr = buf->dtbd_data + offs;
524
size = agg->dtagd_size;
525
hashval = 0;
526
527
for (j = 0; j < agg->dtagd_nrecs - 1; j++) {
528
rec = &agg->dtagd_rec[j];
529
roffs = rec->dtrd_offset;
530
531
switch (rec->dtrd_action) {
532
case DTRACEACT_USYM:
533
dt_aggregate_usym(dtp,
534
/* LINTED - alignment */
535
(uint64_t *)&addr[roffs]);
536
break;
537
538
case DTRACEACT_UMOD:
539
dt_aggregate_umod(dtp,
540
/* LINTED - alignment */
541
(uint64_t *)&addr[roffs]);
542
break;
543
544
case DTRACEACT_SYM:
545
/* LINTED - alignment */
546
dt_aggregate_sym(dtp, (uint64_t *)&addr[roffs]);
547
break;
548
549
case DTRACEACT_MOD:
550
/* LINTED - alignment */
551
dt_aggregate_mod(dtp, (uint64_t *)&addr[roffs]);
552
break;
553
554
default:
555
break;
556
}
557
558
for (i = 0; i < rec->dtrd_size; i++)
559
hashval += addr[roffs + i];
560
}
561
562
ndx = hashval % hash->dtah_size;
563
564
for (h = hash->dtah_hash[ndx]; h != NULL; h = h->dtahe_next) {
565
if (h->dtahe_hashval != hashval)
566
continue;
567
568
if (h->dtahe_size != size)
569
continue;
570
571
aggdata = &h->dtahe_data;
572
data = aggdata->dtada_data;
573
574
for (j = 0; j < agg->dtagd_nrecs - 1; j++) {
575
rec = &agg->dtagd_rec[j];
576
roffs = rec->dtrd_offset;
577
578
for (i = 0; i < rec->dtrd_size; i++)
579
if (addr[roffs + i] != data[roffs + i])
580
goto hashnext;
581
}
582
583
/*
584
* We found it. Now we need to apply the aggregating
585
* action on the data here.
586
*/
587
rec = &agg->dtagd_rec[agg->dtagd_nrecs - 1];
588
roffs = rec->dtrd_offset;
589
/* LINTED - alignment */
590
h->dtahe_aggregate((int64_t *)&data[roffs],
591
/* LINTED - alignment */
592
(int64_t *)&addr[roffs], rec->dtrd_size);
593
594
/*
595
* If we're keeping per CPU data, apply the aggregating
596
* action there as well.
597
*/
598
if (aggdata->dtada_percpu != NULL) {
599
data = aggdata->dtada_percpu[cpu];
600
601
/* LINTED - alignment */
602
h->dtahe_aggregate((int64_t *)data,
603
/* LINTED - alignment */
604
(int64_t *)&addr[roffs], rec->dtrd_size);
605
}
606
607
goto bufnext;
608
hashnext:
609
continue;
610
}
611
612
/*
613
* If we're here, we couldn't find an entry for this record.
614
*/
615
if ((h = malloc(sizeof (dt_ahashent_t))) == NULL)
616
return (dt_set_errno(dtp, EDT_NOMEM));
617
bzero(h, sizeof (dt_ahashent_t));
618
aggdata = &h->dtahe_data;
619
620
if ((aggdata->dtada_data = malloc(size)) == NULL) {
621
free(h);
622
return (dt_set_errno(dtp, EDT_NOMEM));
623
}
624
625
bcopy(addr, aggdata->dtada_data, size);
626
aggdata->dtada_size = size;
627
aggdata->dtada_desc = agg;
628
aggdata->dtada_handle = dtp;
629
(void) dt_epid_lookup(dtp, agg->dtagd_epid,
630
&aggdata->dtada_edesc, &aggdata->dtada_pdesc);
631
aggdata->dtada_normal = 1;
632
633
h->dtahe_hashval = hashval;
634
h->dtahe_size = size;
635
(void) dt_aggregate_aggvarid(h);
636
637
rec = &agg->dtagd_rec[agg->dtagd_nrecs - 1];
638
639
if (flags & DTRACE_A_PERCPU) {
640
int max_cpus = agp->dtat_maxcpu;
641
caddr_t *percpu = malloc(max_cpus * sizeof (caddr_t));
642
643
if (percpu == NULL) {
644
free(aggdata->dtada_data);
645
free(h);
646
return (dt_set_errno(dtp, EDT_NOMEM));
647
}
648
649
for (j = 0; j < max_cpus; j++) {
650
percpu[j] = malloc(rec->dtrd_size);
651
652
if (percpu[j] == NULL) {
653
while (--j >= 0)
654
free(percpu[j]);
655
656
free(aggdata->dtada_data);
657
free(h);
658
return (dt_set_errno(dtp, EDT_NOMEM));
659
}
660
661
if (j == cpu) {
662
bcopy(&addr[rec->dtrd_offset],
663
percpu[j], rec->dtrd_size);
664
} else {
665
bzero(percpu[j], rec->dtrd_size);
666
}
667
}
668
669
aggdata->dtada_percpu = percpu;
670
}
671
672
switch (rec->dtrd_action) {
673
case DTRACEAGG_MIN:
674
h->dtahe_aggregate = dt_aggregate_min;
675
break;
676
677
case DTRACEAGG_MAX:
678
h->dtahe_aggregate = dt_aggregate_max;
679
break;
680
681
case DTRACEAGG_LQUANTIZE:
682
h->dtahe_aggregate = dt_aggregate_lquantize;
683
break;
684
685
case DTRACEAGG_LLQUANTIZE:
686
h->dtahe_aggregate = dt_aggregate_llquantize;
687
break;
688
689
case DTRACEAGG_COUNT:
690
case DTRACEAGG_SUM:
691
case DTRACEAGG_AVG:
692
case DTRACEAGG_STDDEV:
693
case DTRACEAGG_QUANTIZE:
694
h->dtahe_aggregate = dt_aggregate_count;
695
break;
696
697
default:
698
return (dt_set_errno(dtp, EDT_BADAGG));
699
}
700
701
if (hash->dtah_hash[ndx] != NULL)
702
hash->dtah_hash[ndx]->dtahe_prev = h;
703
704
h->dtahe_next = hash->dtah_hash[ndx];
705
hash->dtah_hash[ndx] = h;
706
707
if (hash->dtah_all != NULL)
708
hash->dtah_all->dtahe_prevall = h;
709
710
h->dtahe_nextall = hash->dtah_all;
711
hash->dtah_all = h;
712
bufnext:
713
offs += agg->dtagd_size;
714
}
715
716
return (0);
717
}
718
719
int
720
dtrace_aggregate_snap(dtrace_hdl_t *dtp)
721
{
722
int i, rval;
723
dt_aggregate_t *agp = &dtp->dt_aggregate;
724
hrtime_t now = gethrtime();
725
dtrace_optval_t interval = dtp->dt_options[DTRACEOPT_AGGRATE];
726
727
if (dtp->dt_lastagg != 0) {
728
if (now - dtp->dt_lastagg < interval)
729
return (0);
730
731
dtp->dt_lastagg += interval;
732
} else {
733
dtp->dt_lastagg = now;
734
}
735
736
if (!dtp->dt_active)
737
return (dt_set_errno(dtp, EINVAL));
738
739
if (agp->dtat_buf.dtbd_size == 0)
740
return (0);
741
742
for (i = 0; i < agp->dtat_ncpus; i++) {
743
if ((rval = dt_aggregate_snap_cpu(dtp, agp->dtat_cpus[i])))
744
return (rval);
745
}
746
747
return (0);
748
}
749
750
static int
751
dt_aggregate_hashcmp(const void *lhs, const void *rhs)
752
{
753
dt_ahashent_t *lh = *((dt_ahashent_t **)lhs);
754
dt_ahashent_t *rh = *((dt_ahashent_t **)rhs);
755
dtrace_aggdesc_t *lagg = lh->dtahe_data.dtada_desc;
756
dtrace_aggdesc_t *ragg = rh->dtahe_data.dtada_desc;
757
758
if (lagg->dtagd_nrecs < ragg->dtagd_nrecs)
759
return (DT_LESSTHAN);
760
761
if (lagg->dtagd_nrecs > ragg->dtagd_nrecs)
762
return (DT_GREATERTHAN);
763
764
return (0);
765
}
766
767
static int
768
dt_aggregate_varcmp(const void *lhs, const void *rhs)
769
{
770
dt_ahashent_t *lh = *((dt_ahashent_t **)lhs);
771
dt_ahashent_t *rh = *((dt_ahashent_t **)rhs);
772
dtrace_aggvarid_t lid, rid;
773
774
lid = dt_aggregate_aggvarid(lh);
775
rid = dt_aggregate_aggvarid(rh);
776
777
if (lid < rid)
778
return (DT_LESSTHAN);
779
780
if (lid > rid)
781
return (DT_GREATERTHAN);
782
783
return (0);
784
}
785
786
static int
787
dt_aggregate_keycmp(const void *lhs, const void *rhs)
788
{
789
dt_ahashent_t *lh = *((dt_ahashent_t **)lhs);
790
dt_ahashent_t *rh = *((dt_ahashent_t **)rhs);
791
dtrace_aggdesc_t *lagg = lh->dtahe_data.dtada_desc;
792
dtrace_aggdesc_t *ragg = rh->dtahe_data.dtada_desc;
793
dtrace_recdesc_t *lrec, *rrec;
794
char *ldata, *rdata;
795
int rval, i, j, keypos, nrecs;
796
797
if ((rval = dt_aggregate_hashcmp(lhs, rhs)) != 0)
798
return (rval);
799
800
nrecs = lagg->dtagd_nrecs - 1;
801
assert(nrecs == ragg->dtagd_nrecs - 1);
802
803
keypos = dt_keypos + 1 >= nrecs ? 0 : dt_keypos;
804
805
for (i = 1; i < nrecs; i++) {
806
uint64_t lval, rval;
807
int ndx = i + keypos;
808
809
if (ndx >= nrecs)
810
ndx = ndx - nrecs + 1;
811
812
lrec = &lagg->dtagd_rec[ndx];
813
rrec = &ragg->dtagd_rec[ndx];
814
815
ldata = lh->dtahe_data.dtada_data + lrec->dtrd_offset;
816
rdata = rh->dtahe_data.dtada_data + rrec->dtrd_offset;
817
818
if (lrec->dtrd_size < rrec->dtrd_size)
819
return (DT_LESSTHAN);
820
821
if (lrec->dtrd_size > rrec->dtrd_size)
822
return (DT_GREATERTHAN);
823
824
switch (lrec->dtrd_size) {
825
case sizeof (uint64_t):
826
/* LINTED - alignment */
827
lval = *((uint64_t *)ldata);
828
/* LINTED - alignment */
829
rval = *((uint64_t *)rdata);
830
break;
831
832
case sizeof (uint32_t):
833
/* LINTED - alignment */
834
lval = *((uint32_t *)ldata);
835
/* LINTED - alignment */
836
rval = *((uint32_t *)rdata);
837
break;
838
839
case sizeof (uint16_t):
840
/* LINTED - alignment */
841
lval = *((uint16_t *)ldata);
842
/* LINTED - alignment */
843
rval = *((uint16_t *)rdata);
844
break;
845
846
case sizeof (uint8_t):
847
lval = *((uint8_t *)ldata);
848
rval = *((uint8_t *)rdata);
849
break;
850
851
default:
852
switch (lrec->dtrd_action) {
853
case DTRACEACT_UMOD:
854
case DTRACEACT_UADDR:
855
case DTRACEACT_USYM:
856
for (j = 0; j < 2; j++) {
857
/* LINTED - alignment */
858
lval = ((uint64_t *)ldata)[j];
859
/* LINTED - alignment */
860
rval = ((uint64_t *)rdata)[j];
861
862
if (lval < rval)
863
return (DT_LESSTHAN);
864
865
if (lval > rval)
866
return (DT_GREATERTHAN);
867
}
868
869
break;
870
871
default:
872
for (j = 0; j < lrec->dtrd_size; j++) {
873
lval = ((uint8_t *)ldata)[j];
874
rval = ((uint8_t *)rdata)[j];
875
876
if (lval < rval)
877
return (DT_LESSTHAN);
878
879
if (lval > rval)
880
return (DT_GREATERTHAN);
881
}
882
}
883
884
continue;
885
}
886
887
if (lval < rval)
888
return (DT_LESSTHAN);
889
890
if (lval > rval)
891
return (DT_GREATERTHAN);
892
}
893
894
return (0);
895
}
896
897
static int
898
dt_aggregate_valcmp(const void *lhs, const void *rhs)
899
{
900
dt_ahashent_t *lh = *((dt_ahashent_t **)lhs);
901
dt_ahashent_t *rh = *((dt_ahashent_t **)rhs);
902
dtrace_aggdesc_t *lagg = lh->dtahe_data.dtada_desc;
903
dtrace_aggdesc_t *ragg = rh->dtahe_data.dtada_desc;
904
caddr_t ldata = lh->dtahe_data.dtada_data;
905
caddr_t rdata = rh->dtahe_data.dtada_data;
906
dtrace_recdesc_t *lrec, *rrec;
907
int64_t *laddr, *raddr;
908
int rval;
909
910
assert(lagg->dtagd_nrecs == ragg->dtagd_nrecs);
911
912
lrec = &lagg->dtagd_rec[lagg->dtagd_nrecs - 1];
913
rrec = &ragg->dtagd_rec[ragg->dtagd_nrecs - 1];
914
915
assert(lrec->dtrd_action == rrec->dtrd_action);
916
917
laddr = (int64_t *)(uintptr_t)(ldata + lrec->dtrd_offset);
918
raddr = (int64_t *)(uintptr_t)(rdata + rrec->dtrd_offset);
919
920
switch (lrec->dtrd_action) {
921
case DTRACEAGG_AVG:
922
rval = dt_aggregate_averagecmp(laddr, raddr);
923
break;
924
925
case DTRACEAGG_STDDEV:
926
rval = dt_aggregate_stddevcmp(laddr, raddr);
927
break;
928
929
case DTRACEAGG_QUANTIZE:
930
rval = dt_aggregate_quantizedcmp(laddr, raddr);
931
break;
932
933
case DTRACEAGG_LQUANTIZE:
934
rval = dt_aggregate_lquantizedcmp(laddr, raddr);
935
break;
936
937
case DTRACEAGG_LLQUANTIZE:
938
rval = dt_aggregate_llquantizedcmp(laddr, raddr);
939
break;
940
941
case DTRACEAGG_COUNT:
942
case DTRACEAGG_SUM:
943
case DTRACEAGG_MIN:
944
case DTRACEAGG_MAX:
945
rval = dt_aggregate_countcmp(laddr, raddr);
946
break;
947
948
default:
949
assert(0);
950
}
951
952
return (rval);
953
}
954
955
static int
956
dt_aggregate_valkeycmp(const void *lhs, const void *rhs)
957
{
958
int rval;
959
960
if ((rval = dt_aggregate_valcmp(lhs, rhs)) != 0)
961
return (rval);
962
963
/*
964
* If we're here, the values for the two aggregation elements are
965
* equal. We already know that the key layout is the same for the two
966
* elements; we must now compare the keys themselves as a tie-breaker.
967
*/
968
return (dt_aggregate_keycmp(lhs, rhs));
969
}
970
971
static int
972
dt_aggregate_keyvarcmp(const void *lhs, const void *rhs)
973
{
974
int rval;
975
976
if ((rval = dt_aggregate_keycmp(lhs, rhs)) != 0)
977
return (rval);
978
979
return (dt_aggregate_varcmp(lhs, rhs));
980
}
981
982
static int
983
dt_aggregate_varkeycmp(const void *lhs, const void *rhs)
984
{
985
int rval;
986
987
if ((rval = dt_aggregate_varcmp(lhs, rhs)) != 0)
988
return (rval);
989
990
return (dt_aggregate_keycmp(lhs, rhs));
991
}
992
993
static int
994
dt_aggregate_valvarcmp(const void *lhs, const void *rhs)
995
{
996
int rval;
997
998
if ((rval = dt_aggregate_valkeycmp(lhs, rhs)) != 0)
999
return (rval);
1000
1001
return (dt_aggregate_varcmp(lhs, rhs));
1002
}
1003
1004
static int
1005
dt_aggregate_varvalcmp(const void *lhs, const void *rhs)
1006
{
1007
int rval;
1008
1009
if ((rval = dt_aggregate_varcmp(lhs, rhs)) != 0)
1010
return (rval);
1011
1012
return (dt_aggregate_valkeycmp(lhs, rhs));
1013
}
1014
1015
static int
1016
dt_aggregate_keyvarrevcmp(const void *lhs, const void *rhs)
1017
{
1018
return (dt_aggregate_keyvarcmp(rhs, lhs));
1019
}
1020
1021
static int
1022
dt_aggregate_varkeyrevcmp(const void *lhs, const void *rhs)
1023
{
1024
return (dt_aggregate_varkeycmp(rhs, lhs));
1025
}
1026
1027
static int
1028
dt_aggregate_valvarrevcmp(const void *lhs, const void *rhs)
1029
{
1030
return (dt_aggregate_valvarcmp(rhs, lhs));
1031
}
1032
1033
static int
1034
dt_aggregate_varvalrevcmp(const void *lhs, const void *rhs)
1035
{
1036
return (dt_aggregate_varvalcmp(rhs, lhs));
1037
}
1038
1039
static int
1040
dt_aggregate_bundlecmp(const void *lhs, const void *rhs)
1041
{
1042
dt_ahashent_t **lh = *((dt_ahashent_t ***)lhs);
1043
dt_ahashent_t **rh = *((dt_ahashent_t ***)rhs);
1044
int i, rval;
1045
1046
if (dt_keysort) {
1047
/*
1048
* If we're sorting on keys, we need to scan until we find the
1049
* last entry -- that's the representative key. (The order of
1050
* the bundle is values followed by key to accommodate the
1051
* default behavior of sorting by value.) If the keys are
1052
* equal, we'll fall into the value comparison loop, below.
1053
*/
1054
for (i = 0; lh[i + 1] != NULL; i++)
1055
continue;
1056
1057
assert(i != 0);
1058
assert(rh[i + 1] == NULL);
1059
1060
if ((rval = dt_aggregate_keycmp(&lh[i], &rh[i])) != 0)
1061
return (rval);
1062
}
1063
1064
for (i = 0; ; i++) {
1065
if (lh[i + 1] == NULL) {
1066
/*
1067
* All of the values are equal; if we're sorting on
1068
* keys, then we're only here because the keys were
1069
* found to be equal and these records are therefore
1070
* equal. If we're not sorting on keys, we'll use the
1071
* key comparison from the representative key as the
1072
* tie-breaker.
1073
*/
1074
if (dt_keysort)
1075
return (0);
1076
1077
assert(i != 0);
1078
assert(rh[i + 1] == NULL);
1079
return (dt_aggregate_keycmp(&lh[i], &rh[i]));
1080
} else {
1081
if ((rval = dt_aggregate_valcmp(&lh[i], &rh[i])) != 0)
1082
return (rval);
1083
}
1084
}
1085
}
1086
1087
int
1088
dt_aggregate_go(dtrace_hdl_t *dtp)
1089
{
1090
dt_aggregate_t *agp = &dtp->dt_aggregate;
1091
dtrace_optval_t size, cpu;
1092
dtrace_bufdesc_t *buf = &agp->dtat_buf;
1093
int rval, i;
1094
1095
assert(agp->dtat_maxcpu == 0);
1096
assert(agp->dtat_ncpu == 0);
1097
assert(agp->dtat_cpus == NULL);
1098
1099
agp->dtat_maxcpu = dt_cpu_maxid(dtp) + 1;
1100
if (agp->dtat_maxcpu <= 0)
1101
return (-1);
1102
agp->dtat_ncpu = dt_sysconf(dtp, _SC_NPROCESSORS_CONF);
1103
agp->dtat_cpus = malloc(agp->dtat_ncpu * sizeof (processorid_t));
1104
1105
if (agp->dtat_cpus == NULL)
1106
return (dt_set_errno(dtp, EDT_NOMEM));
1107
1108
/*
1109
* Use the aggregation buffer size as reloaded from the kernel.
1110
*/
1111
size = dtp->dt_options[DTRACEOPT_AGGSIZE];
1112
1113
rval = dtrace_getopt(dtp, "aggsize", &size);
1114
assert(rval == 0);
1115
1116
if (size == 0 || size == DTRACEOPT_UNSET)
1117
return (0);
1118
1119
buf = &agp->dtat_buf;
1120
buf->dtbd_size = size;
1121
1122
if ((buf->dtbd_data = malloc(buf->dtbd_size)) == NULL)
1123
return (dt_set_errno(dtp, EDT_NOMEM));
1124
1125
/*
1126
* Now query for the CPUs enabled.
1127
*/
1128
rval = dtrace_getopt(dtp, "cpu", &cpu);
1129
assert(rval == 0 && cpu != DTRACEOPT_UNSET);
1130
1131
if (cpu != DTRACE_CPUALL) {
1132
assert(cpu < agp->dtat_ncpu);
1133
agp->dtat_cpus[agp->dtat_ncpus++] = (processorid_t)cpu;
1134
1135
return (0);
1136
}
1137
1138
agp->dtat_ncpus = 0;
1139
for (i = 0; i < agp->dtat_maxcpu; i++) {
1140
if (dt_status(dtp, i) == -1)
1141
continue;
1142
1143
agp->dtat_cpus[agp->dtat_ncpus++] = i;
1144
}
1145
1146
return (0);
1147
}
1148
1149
static int
1150
dt_aggwalk_rval(dtrace_hdl_t *dtp, dt_ahashent_t *h, int rval)
1151
{
1152
dt_aggregate_t *agp = &dtp->dt_aggregate;
1153
dtrace_aggdata_t *data;
1154
dtrace_aggdesc_t *aggdesc;
1155
dtrace_recdesc_t *rec;
1156
int i;
1157
1158
switch (rval) {
1159
case DTRACE_AGGWALK_NEXT:
1160
break;
1161
1162
case DTRACE_AGGWALK_CLEAR: {
1163
uint32_t size, offs = 0;
1164
1165
aggdesc = h->dtahe_data.dtada_desc;
1166
rec = &aggdesc->dtagd_rec[aggdesc->dtagd_nrecs - 1];
1167
size = rec->dtrd_size;
1168
data = &h->dtahe_data;
1169
1170
if (rec->dtrd_action == DTRACEAGG_LQUANTIZE) {
1171
offs = sizeof (uint64_t);
1172
size -= sizeof (uint64_t);
1173
}
1174
1175
bzero(&data->dtada_data[rec->dtrd_offset] + offs, size);
1176
1177
if (data->dtada_percpu == NULL)
1178
break;
1179
1180
for (i = 0; i < dtp->dt_aggregate.dtat_maxcpu; i++)
1181
bzero(data->dtada_percpu[i] + offs, size);
1182
break;
1183
}
1184
1185
case DTRACE_AGGWALK_ERROR:
1186
/*
1187
* We assume that errno is already set in this case.
1188
*/
1189
return (dt_set_errno(dtp, errno));
1190
1191
case DTRACE_AGGWALK_ABORT:
1192
return (dt_set_errno(dtp, EDT_DIRABORT));
1193
1194
case DTRACE_AGGWALK_DENORMALIZE:
1195
h->dtahe_data.dtada_normal = 1;
1196
return (0);
1197
1198
case DTRACE_AGGWALK_NORMALIZE:
1199
if (h->dtahe_data.dtada_normal == 0) {
1200
h->dtahe_data.dtada_normal = 1;
1201
return (dt_set_errno(dtp, EDT_BADRVAL));
1202
}
1203
1204
return (0);
1205
1206
case DTRACE_AGGWALK_REMOVE: {
1207
dtrace_aggdata_t *aggdata = &h->dtahe_data;
1208
int max_cpus = agp->dtat_maxcpu;
1209
1210
/*
1211
* First, remove this hash entry from its hash chain.
1212
*/
1213
if (h->dtahe_prev != NULL) {
1214
h->dtahe_prev->dtahe_next = h->dtahe_next;
1215
} else {
1216
dt_ahash_t *hash = &agp->dtat_hash;
1217
size_t ndx = h->dtahe_hashval % hash->dtah_size;
1218
1219
assert(hash->dtah_hash[ndx] == h);
1220
hash->dtah_hash[ndx] = h->dtahe_next;
1221
}
1222
1223
if (h->dtahe_next != NULL)
1224
h->dtahe_next->dtahe_prev = h->dtahe_prev;
1225
1226
/*
1227
* Now remove it from the list of all hash entries.
1228
*/
1229
if (h->dtahe_prevall != NULL) {
1230
h->dtahe_prevall->dtahe_nextall = h->dtahe_nextall;
1231
} else {
1232
dt_ahash_t *hash = &agp->dtat_hash;
1233
1234
assert(hash->dtah_all == h);
1235
hash->dtah_all = h->dtahe_nextall;
1236
}
1237
1238
if (h->dtahe_nextall != NULL)
1239
h->dtahe_nextall->dtahe_prevall = h->dtahe_prevall;
1240
1241
/*
1242
* We're unlinked. We can safely destroy the data.
1243
*/
1244
if (aggdata->dtada_percpu != NULL) {
1245
for (i = 0; i < max_cpus; i++)
1246
free(aggdata->dtada_percpu[i]);
1247
free(aggdata->dtada_percpu);
1248
}
1249
1250
free(aggdata->dtada_data);
1251
free(h);
1252
1253
return (0);
1254
}
1255
1256
default:
1257
return (dt_set_errno(dtp, EDT_BADRVAL));
1258
}
1259
1260
return (0);
1261
}
1262
1263
void
1264
dt_aggregate_qsort(dtrace_hdl_t *dtp, void *base, size_t nel, size_t width,
1265
int (*compar)(const void *, const void *))
1266
{
1267
int rev = dt_revsort, key = dt_keysort, keypos = dt_keypos;
1268
dtrace_optval_t keyposopt = dtp->dt_options[DTRACEOPT_AGGSORTKEYPOS];
1269
1270
dt_revsort = (dtp->dt_options[DTRACEOPT_AGGSORTREV] != DTRACEOPT_UNSET);
1271
dt_keysort = (dtp->dt_options[DTRACEOPT_AGGSORTKEY] != DTRACEOPT_UNSET);
1272
1273
if (keyposopt != DTRACEOPT_UNSET && keyposopt <= INT_MAX) {
1274
dt_keypos = (int)keyposopt;
1275
} else {
1276
dt_keypos = 0;
1277
}
1278
1279
if (compar == NULL) {
1280
if (!dt_keysort) {
1281
compar = dt_aggregate_varvalcmp;
1282
} else {
1283
compar = dt_aggregate_varkeycmp;
1284
}
1285
}
1286
1287
qsort(base, nel, width, compar);
1288
1289
dt_revsort = rev;
1290
dt_keysort = key;
1291
dt_keypos = keypos;
1292
}
1293
1294
int
1295
dtrace_aggregate_walk(dtrace_hdl_t *dtp, dtrace_aggregate_f *func, void *arg)
1296
{
1297
dt_ahashent_t *h, *next;
1298
dt_ahash_t *hash = &dtp->dt_aggregate.dtat_hash;
1299
1300
for (h = hash->dtah_all; h != NULL; h = next) {
1301
/*
1302
* dt_aggwalk_rval() can potentially remove the current hash
1303
* entry; we need to load the next hash entry before calling
1304
* into it.
1305
*/
1306
next = h->dtahe_nextall;
1307
1308
if (dt_aggwalk_rval(dtp, h, func(&h->dtahe_data, arg)) == -1)
1309
return (-1);
1310
}
1311
1312
return (0);
1313
}
1314
1315
static int
1316
dt_aggregate_total(dtrace_hdl_t *dtp, boolean_t clear)
1317
{
1318
dt_ahashent_t *h;
1319
dtrace_aggdata_t **total;
1320
dtrace_aggid_t max = DTRACE_AGGVARIDNONE, id;
1321
dt_aggregate_t *agp = &dtp->dt_aggregate;
1322
dt_ahash_t *hash = &agp->dtat_hash;
1323
uint32_t tflags;
1324
1325
tflags = DTRACE_A_TOTAL | DTRACE_A_HASNEGATIVES | DTRACE_A_HASPOSITIVES;
1326
1327
/*
1328
* If we need to deliver per-aggregation totals, we're going to take
1329
* three passes over the aggregate: one to clear everything out and
1330
* determine our maximum aggregation ID, one to actually total
1331
* everything up, and a final pass to assign the totals to the
1332
* individual elements.
1333
*/
1334
for (h = hash->dtah_all; h != NULL; h = h->dtahe_nextall) {
1335
dtrace_aggdata_t *aggdata = &h->dtahe_data;
1336
1337
if ((id = dt_aggregate_aggvarid(h)) > max)
1338
max = id;
1339
1340
aggdata->dtada_total = 0;
1341
aggdata->dtada_flags &= ~tflags;
1342
}
1343
1344
if (clear || max == DTRACE_AGGVARIDNONE)
1345
return (0);
1346
1347
total = dt_zalloc(dtp, (max + 1) * sizeof (dtrace_aggdata_t *));
1348
1349
if (total == NULL)
1350
return (-1);
1351
1352
for (h = hash->dtah_all; h != NULL; h = h->dtahe_nextall) {
1353
dtrace_aggdata_t *aggdata = &h->dtahe_data;
1354
dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1355
dtrace_recdesc_t *rec;
1356
caddr_t data;
1357
int64_t val, *addr;
1358
1359
rec = &agg->dtagd_rec[agg->dtagd_nrecs - 1];
1360
data = aggdata->dtada_data;
1361
addr = (int64_t *)(uintptr_t)(data + rec->dtrd_offset);
1362
1363
switch (rec->dtrd_action) {
1364
case DTRACEAGG_STDDEV:
1365
val = dt_stddev((uint64_t *)addr, 1);
1366
break;
1367
1368
case DTRACEAGG_SUM:
1369
case DTRACEAGG_COUNT:
1370
val = *addr;
1371
break;
1372
1373
case DTRACEAGG_AVG:
1374
val = addr[0] ? (addr[1] / addr[0]) : 0;
1375
break;
1376
1377
default:
1378
continue;
1379
}
1380
1381
if (total[agg->dtagd_varid] == NULL) {
1382
total[agg->dtagd_varid] = aggdata;
1383
aggdata->dtada_flags |= DTRACE_A_TOTAL;
1384
} else {
1385
aggdata = total[agg->dtagd_varid];
1386
}
1387
1388
if (val > 0)
1389
aggdata->dtada_flags |= DTRACE_A_HASPOSITIVES;
1390
1391
if (val < 0) {
1392
aggdata->dtada_flags |= DTRACE_A_HASNEGATIVES;
1393
val = -val;
1394
}
1395
1396
if (dtp->dt_options[DTRACEOPT_AGGZOOM] != DTRACEOPT_UNSET) {
1397
val = (int64_t)((long double)val *
1398
(1 / DTRACE_AGGZOOM_MAX));
1399
1400
if (val > aggdata->dtada_total)
1401
aggdata->dtada_total = val;
1402
} else {
1403
aggdata->dtada_total += val;
1404
}
1405
}
1406
1407
/*
1408
* And now one final pass to set everyone's total.
1409
*/
1410
for (h = hash->dtah_all; h != NULL; h = h->dtahe_nextall) {
1411
dtrace_aggdata_t *aggdata = &h->dtahe_data, *t;
1412
dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1413
1414
if ((t = total[agg->dtagd_varid]) == NULL || aggdata == t)
1415
continue;
1416
1417
aggdata->dtada_total = t->dtada_total;
1418
aggdata->dtada_flags |= (t->dtada_flags & tflags);
1419
}
1420
1421
dt_free(dtp, total);
1422
1423
return (0);
1424
}
1425
1426
static int
1427
dt_aggregate_minmaxbin(dtrace_hdl_t *dtp, boolean_t clear)
1428
{
1429
dt_ahashent_t *h;
1430
dtrace_aggdata_t **minmax;
1431
dtrace_aggid_t max = DTRACE_AGGVARIDNONE, id;
1432
dt_aggregate_t *agp = &dtp->dt_aggregate;
1433
dt_ahash_t *hash = &agp->dtat_hash;
1434
1435
for (h = hash->dtah_all; h != NULL; h = h->dtahe_nextall) {
1436
dtrace_aggdata_t *aggdata = &h->dtahe_data;
1437
1438
if ((id = dt_aggregate_aggvarid(h)) > max)
1439
max = id;
1440
1441
aggdata->dtada_minbin = 0;
1442
aggdata->dtada_maxbin = 0;
1443
aggdata->dtada_flags &= ~DTRACE_A_MINMAXBIN;
1444
}
1445
1446
if (clear || max == DTRACE_AGGVARIDNONE)
1447
return (0);
1448
1449
minmax = dt_zalloc(dtp, (max + 1) * sizeof (dtrace_aggdata_t *));
1450
1451
if (minmax == NULL)
1452
return (-1);
1453
1454
for (h = hash->dtah_all; h != NULL; h = h->dtahe_nextall) {
1455
dtrace_aggdata_t *aggdata = &h->dtahe_data;
1456
dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1457
dtrace_recdesc_t *rec;
1458
caddr_t data;
1459
int64_t *addr;
1460
int minbin = -1, maxbin = -1, i;
1461
int start = 0, size;
1462
1463
rec = &agg->dtagd_rec[agg->dtagd_nrecs - 1];
1464
size = rec->dtrd_size / sizeof (int64_t);
1465
data = aggdata->dtada_data;
1466
addr = (int64_t *)(uintptr_t)(data + rec->dtrd_offset);
1467
1468
switch (rec->dtrd_action) {
1469
case DTRACEAGG_LQUANTIZE:
1470
/*
1471
* For lquantize(), we always display the entire range
1472
* of the aggregation when aggpack is set.
1473
*/
1474
start = 1;
1475
minbin = start;
1476
maxbin = size - 1 - start;
1477
break;
1478
1479
case DTRACEAGG_QUANTIZE:
1480
for (i = start; i < size; i++) {
1481
if (!addr[i])
1482
continue;
1483
1484
if (minbin == -1)
1485
minbin = i - start;
1486
1487
maxbin = i - start;
1488
}
1489
1490
if (minbin == -1) {
1491
/*
1492
* If we have no data (e.g., due to a clear()
1493
* or negative increments), we'll use the
1494
* zero bucket as both our min and max.
1495
*/
1496
minbin = maxbin = DTRACE_QUANTIZE_ZEROBUCKET;
1497
}
1498
1499
break;
1500
1501
default:
1502
continue;
1503
}
1504
1505
if (minmax[agg->dtagd_varid] == NULL) {
1506
minmax[agg->dtagd_varid] = aggdata;
1507
aggdata->dtada_flags |= DTRACE_A_MINMAXBIN;
1508
aggdata->dtada_minbin = minbin;
1509
aggdata->dtada_maxbin = maxbin;
1510
continue;
1511
}
1512
1513
if (minbin < minmax[agg->dtagd_varid]->dtada_minbin)
1514
minmax[agg->dtagd_varid]->dtada_minbin = minbin;
1515
1516
if (maxbin > minmax[agg->dtagd_varid]->dtada_maxbin)
1517
minmax[agg->dtagd_varid]->dtada_maxbin = maxbin;
1518
}
1519
1520
/*
1521
* And now one final pass to set everyone's minbin and maxbin.
1522
*/
1523
for (h = hash->dtah_all; h != NULL; h = h->dtahe_nextall) {
1524
dtrace_aggdata_t *aggdata = &h->dtahe_data, *mm;
1525
dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1526
1527
if ((mm = minmax[agg->dtagd_varid]) == NULL || aggdata == mm)
1528
continue;
1529
1530
aggdata->dtada_minbin = mm->dtada_minbin;
1531
aggdata->dtada_maxbin = mm->dtada_maxbin;
1532
aggdata->dtada_flags |= DTRACE_A_MINMAXBIN;
1533
}
1534
1535
dt_free(dtp, minmax);
1536
1537
return (0);
1538
}
1539
1540
static int
1541
dt_aggregate_walk_sorted(dtrace_hdl_t *dtp,
1542
dtrace_aggregate_f *func, void *arg,
1543
int (*sfunc)(const void *, const void *))
1544
{
1545
dt_aggregate_t *agp = &dtp->dt_aggregate;
1546
dt_ahashent_t *h, **sorted;
1547
dt_ahash_t *hash = &agp->dtat_hash;
1548
size_t i, nentries = 0;
1549
int rval = -1;
1550
1551
agp->dtat_flags &= ~(DTRACE_A_TOTAL | DTRACE_A_MINMAXBIN);
1552
1553
if (dtp->dt_options[DTRACEOPT_AGGHIST] != DTRACEOPT_UNSET) {
1554
agp->dtat_flags |= DTRACE_A_TOTAL;
1555
1556
if (dt_aggregate_total(dtp, B_FALSE) != 0)
1557
return (-1);
1558
}
1559
1560
if (dtp->dt_options[DTRACEOPT_AGGPACK] != DTRACEOPT_UNSET) {
1561
agp->dtat_flags |= DTRACE_A_MINMAXBIN;
1562
1563
if (dt_aggregate_minmaxbin(dtp, B_FALSE) != 0)
1564
return (-1);
1565
}
1566
1567
for (h = hash->dtah_all; h != NULL; h = h->dtahe_nextall)
1568
nentries++;
1569
1570
sorted = dt_alloc(dtp, nentries * sizeof (dt_ahashent_t *));
1571
1572
if (sorted == NULL)
1573
goto out;
1574
1575
for (h = hash->dtah_all, i = 0; h != NULL; h = h->dtahe_nextall)
1576
sorted[i++] = h;
1577
1578
(void) pthread_mutex_lock(&dt_qsort_lock);
1579
1580
if (sfunc == NULL) {
1581
dt_aggregate_qsort(dtp, sorted, nentries,
1582
sizeof (dt_ahashent_t *), NULL);
1583
} else {
1584
/*
1585
* If we've been explicitly passed a sorting function,
1586
* we'll use that -- ignoring the values of the "aggsortrev",
1587
* "aggsortkey" and "aggsortkeypos" options.
1588
*/
1589
qsort(sorted, nentries, sizeof (dt_ahashent_t *), sfunc);
1590
}
1591
1592
(void) pthread_mutex_unlock(&dt_qsort_lock);
1593
1594
for (i = 0; i < nentries; i++) {
1595
h = sorted[i];
1596
1597
if (dt_aggwalk_rval(dtp, h, func(&h->dtahe_data, arg)) == -1)
1598
goto out;
1599
}
1600
1601
rval = 0;
1602
out:
1603
if (agp->dtat_flags & DTRACE_A_TOTAL)
1604
(void) dt_aggregate_total(dtp, B_TRUE);
1605
1606
if (agp->dtat_flags & DTRACE_A_MINMAXBIN)
1607
(void) dt_aggregate_minmaxbin(dtp, B_TRUE);
1608
1609
dt_free(dtp, sorted);
1610
return (rval);
1611
}
1612
1613
int
1614
dtrace_aggregate_walk_sorted(dtrace_hdl_t *dtp,
1615
dtrace_aggregate_f *func, void *arg)
1616
{
1617
return (dt_aggregate_walk_sorted(dtp, func, arg, NULL));
1618
}
1619
1620
int
1621
dtrace_aggregate_walk_keysorted(dtrace_hdl_t *dtp,
1622
dtrace_aggregate_f *func, void *arg)
1623
{
1624
return (dt_aggregate_walk_sorted(dtp, func,
1625
arg, dt_aggregate_varkeycmp));
1626
}
1627
1628
int
1629
dtrace_aggregate_walk_valsorted(dtrace_hdl_t *dtp,
1630
dtrace_aggregate_f *func, void *arg)
1631
{
1632
return (dt_aggregate_walk_sorted(dtp, func,
1633
arg, dt_aggregate_varvalcmp));
1634
}
1635
1636
int
1637
dtrace_aggregate_walk_keyvarsorted(dtrace_hdl_t *dtp,
1638
dtrace_aggregate_f *func, void *arg)
1639
{
1640
return (dt_aggregate_walk_sorted(dtp, func,
1641
arg, dt_aggregate_keyvarcmp));
1642
}
1643
1644
int
1645
dtrace_aggregate_walk_valvarsorted(dtrace_hdl_t *dtp,
1646
dtrace_aggregate_f *func, void *arg)
1647
{
1648
return (dt_aggregate_walk_sorted(dtp, func,
1649
arg, dt_aggregate_valvarcmp));
1650
}
1651
1652
int
1653
dtrace_aggregate_walk_keyrevsorted(dtrace_hdl_t *dtp,
1654
dtrace_aggregate_f *func, void *arg)
1655
{
1656
return (dt_aggregate_walk_sorted(dtp, func,
1657
arg, dt_aggregate_varkeyrevcmp));
1658
}
1659
1660
int
1661
dtrace_aggregate_walk_valrevsorted(dtrace_hdl_t *dtp,
1662
dtrace_aggregate_f *func, void *arg)
1663
{
1664
return (dt_aggregate_walk_sorted(dtp, func,
1665
arg, dt_aggregate_varvalrevcmp));
1666
}
1667
1668
int
1669
dtrace_aggregate_walk_keyvarrevsorted(dtrace_hdl_t *dtp,
1670
dtrace_aggregate_f *func, void *arg)
1671
{
1672
return (dt_aggregate_walk_sorted(dtp, func,
1673
arg, dt_aggregate_keyvarrevcmp));
1674
}
1675
1676
int
1677
dtrace_aggregate_walk_valvarrevsorted(dtrace_hdl_t *dtp,
1678
dtrace_aggregate_f *func, void *arg)
1679
{
1680
return (dt_aggregate_walk_sorted(dtp, func,
1681
arg, dt_aggregate_valvarrevcmp));
1682
}
1683
1684
int
1685
dtrace_aggregate_walk_joined(dtrace_hdl_t *dtp, dtrace_aggvarid_t *aggvars,
1686
int naggvars, dtrace_aggregate_walk_joined_f *func, void *arg)
1687
{
1688
dt_aggregate_t *agp = &dtp->dt_aggregate;
1689
dt_ahashent_t *h, **sorted = NULL, ***bundle, **nbundle;
1690
const dtrace_aggdata_t **data;
1691
dt_ahashent_t *zaggdata = NULL;
1692
dt_ahash_t *hash = &agp->dtat_hash;
1693
size_t nentries = 0, nbundles = 0, start, zsize = 0, bundlesize;
1694
dtrace_aggvarid_t max = 0, aggvar;
1695
int rval = -1, *map, *remap = NULL;
1696
int i, j;
1697
dtrace_optval_t sortpos = dtp->dt_options[DTRACEOPT_AGGSORTPOS];
1698
1699
/*
1700
* If the sorting position is greater than the number of aggregation
1701
* variable IDs, we silently set it to 0.
1702
*/
1703
if (sortpos == DTRACEOPT_UNSET || sortpos >= naggvars)
1704
sortpos = 0;
1705
1706
/*
1707
* First we need to translate the specified aggregation variable IDs
1708
* into a linear map that will allow us to translate an aggregation
1709
* variable ID into its position in the specified aggvars.
1710
*/
1711
for (i = 0; i < naggvars; i++) {
1712
if (aggvars[i] == DTRACE_AGGVARIDNONE || aggvars[i] < 0)
1713
return (dt_set_errno(dtp, EDT_BADAGGVAR));
1714
1715
if (aggvars[i] > max)
1716
max = aggvars[i];
1717
}
1718
1719
if ((map = dt_zalloc(dtp, (max + 1) * sizeof (int))) == NULL)
1720
return (-1);
1721
1722
zaggdata = dt_zalloc(dtp, naggvars * sizeof (dt_ahashent_t));
1723
1724
if (zaggdata == NULL)
1725
goto out;
1726
1727
for (i = 0; i < naggvars; i++) {
1728
int ndx = i + sortpos;
1729
1730
if (ndx >= naggvars)
1731
ndx -= naggvars;
1732
1733
aggvar = aggvars[ndx];
1734
assert(aggvar <= max);
1735
1736
if (map[aggvar]) {
1737
/*
1738
* We have an aggregation variable that is present
1739
* more than once in the array of aggregation
1740
* variables. While it's unclear why one might want
1741
* to do this, it's legal. To support this construct,
1742
* we will allocate a remap that will indicate the
1743
* position from which this aggregation variable
1744
* should be pulled. (That is, where the remap will
1745
* map from one position to another.)
1746
*/
1747
if (remap == NULL) {
1748
remap = dt_zalloc(dtp, naggvars * sizeof (int));
1749
1750
if (remap == NULL)
1751
goto out;
1752
}
1753
1754
/*
1755
* Given that the variable is already present, assert
1756
* that following through the mapping and adjusting
1757
* for the sort position yields the same aggregation
1758
* variable ID.
1759
*/
1760
assert(aggvars[(map[aggvar] - 1 + sortpos) %
1761
naggvars] == aggvars[ndx]);
1762
1763
remap[i] = map[aggvar];
1764
continue;
1765
}
1766
1767
map[aggvar] = i + 1;
1768
}
1769
1770
/*
1771
* We need to take two passes over the data to size our allocation, so
1772
* we'll use the first pass to also fill in the zero-filled data to be
1773
* used to properly format a zero-valued aggregation.
1774
*/
1775
for (h = hash->dtah_all; h != NULL; h = h->dtahe_nextall) {
1776
dtrace_aggvarid_t id;
1777
int ndx;
1778
1779
if ((id = dt_aggregate_aggvarid(h)) > max || !(ndx = map[id]))
1780
continue;
1781
1782
if (zaggdata[ndx - 1].dtahe_size == 0) {
1783
zaggdata[ndx - 1].dtahe_size = h->dtahe_size;
1784
zaggdata[ndx - 1].dtahe_data = h->dtahe_data;
1785
}
1786
1787
nentries++;
1788
}
1789
1790
if (nentries == 0) {
1791
/*
1792
* We couldn't find any entries; there is nothing else to do.
1793
*/
1794
rval = 0;
1795
goto out;
1796
}
1797
1798
/*
1799
* Before we sort the data, we're going to look for any holes in our
1800
* zero-filled data. This will occur if an aggregation variable that
1801
* we are being asked to print has not yet been assigned the result of
1802
* any aggregating action for _any_ tuple. The issue becomes that we
1803
* would like a zero value to be printed for all columns for this
1804
* aggregation, but without any record description, we don't know the
1805
* aggregating action that corresponds to the aggregation variable. To
1806
* try to find a match, we're simply going to lookup aggregation IDs
1807
* (which are guaranteed to be contiguous and to start from 1), looking
1808
* for the specified aggregation variable ID. If we find a match,
1809
* we'll use that. If we iterate over all aggregation IDs and don't
1810
* find a match, then we must be an anonymous enabling. (Anonymous
1811
* enablings can't currently derive either aggregation variable IDs or
1812
* aggregation variable names given only an aggregation ID.) In this
1813
* obscure case (anonymous enabling, multiple aggregation printa() with
1814
* some aggregations not represented for any tuple), our defined
1815
* behavior is that the zero will be printed in the format of the first
1816
* aggregation variable that contains any non-zero value.
1817
*/
1818
for (i = 0; i < naggvars; i++) {
1819
if (zaggdata[i].dtahe_size == 0) {
1820
dtrace_aggvarid_t aggvar;
1821
1822
aggvar = aggvars[(i - sortpos + naggvars) % naggvars];
1823
assert(zaggdata[i].dtahe_data.dtada_data == NULL);
1824
1825
for (j = DTRACE_AGGIDNONE + 1; ; j++) {
1826
dtrace_aggdesc_t *agg;
1827
dtrace_aggdata_t *aggdata;
1828
1829
if (dt_aggid_lookup(dtp, j, &agg) != 0)
1830
break;
1831
1832
if (agg->dtagd_varid != aggvar)
1833
continue;
1834
1835
/*
1836
* We have our description -- now we need to
1837
* cons up the zaggdata entry for it.
1838
*/
1839
aggdata = &zaggdata[i].dtahe_data;
1840
aggdata->dtada_size = agg->dtagd_size;
1841
aggdata->dtada_desc = agg;
1842
aggdata->dtada_handle = dtp;
1843
(void) dt_epid_lookup(dtp, agg->dtagd_epid,
1844
&aggdata->dtada_edesc,
1845
&aggdata->dtada_pdesc);
1846
aggdata->dtada_normal = 1;
1847
zaggdata[i].dtahe_hashval = 0;
1848
zaggdata[i].dtahe_size = agg->dtagd_size;
1849
break;
1850
}
1851
1852
if (zaggdata[i].dtahe_size == 0) {
1853
caddr_t data;
1854
1855
/*
1856
* We couldn't find this aggregation, meaning
1857
* that we have never seen it before for any
1858
* tuple _and_ this is an anonymous enabling.
1859
* That is, we're in the obscure case outlined
1860
* above. In this case, our defined behavior
1861
* is to format the data in the format of the
1862
* first non-zero aggregation -- of which, of
1863
* course, we know there to be at least one
1864
* (or nentries would have been zero).
1865
*/
1866
for (j = 0; j < naggvars; j++) {
1867
if (zaggdata[j].dtahe_size != 0)
1868
break;
1869
}
1870
1871
assert(j < naggvars);
1872
zaggdata[i] = zaggdata[j];
1873
1874
data = zaggdata[i].dtahe_data.dtada_data;
1875
assert(data != NULL);
1876
}
1877
}
1878
}
1879
1880
/*
1881
* Now we need to allocate our zero-filled data for use for
1882
* aggregations that don't have a value corresponding to a given key.
1883
*/
1884
for (i = 0; i < naggvars; i++) {
1885
dtrace_aggdata_t *aggdata = &zaggdata[i].dtahe_data;
1886
dtrace_aggdesc_t *aggdesc = aggdata->dtada_desc;
1887
dtrace_recdesc_t *rec;
1888
uint64_t larg;
1889
caddr_t zdata;
1890
1891
zsize = zaggdata[i].dtahe_size;
1892
assert(zsize != 0);
1893
1894
if ((zdata = dt_zalloc(dtp, zsize)) == NULL) {
1895
/*
1896
* If we failed to allocated some zero-filled data, we
1897
* need to zero out the remaining dtada_data pointers
1898
* to prevent the wrong data from being freed below.
1899
*/
1900
for (j = i; j < naggvars; j++)
1901
zaggdata[j].dtahe_data.dtada_data = NULL;
1902
goto out;
1903
}
1904
1905
aggvar = aggvars[(i - sortpos + naggvars) % naggvars];
1906
1907
/*
1908
* First, the easy bit. To maintain compatibility with
1909
* consumers that pull the compiler-generated ID out of the
1910
* data, we put that ID at the top of the zero-filled data.
1911
*/
1912
rec = &aggdesc->dtagd_rec[0];
1913
/* LINTED - alignment */
1914
*((dtrace_aggvarid_t *)(zdata + rec->dtrd_offset)) = aggvar;
1915
1916
rec = &aggdesc->dtagd_rec[aggdesc->dtagd_nrecs - 1];
1917
1918
/*
1919
* Now for the more complicated part. If (and only if) this
1920
* is an lquantize() aggregating action, zero-filled data is
1921
* not equivalent to an empty record: we must also get the
1922
* parameters for the lquantize().
1923
*/
1924
if (rec->dtrd_action == DTRACEAGG_LQUANTIZE) {
1925
if (aggdata->dtada_data != NULL) {
1926
/*
1927
* The easier case here is if we actually have
1928
* some prototype data -- in which case we
1929
* manually dig it out of the aggregation
1930
* record.
1931
*/
1932
/* LINTED - alignment */
1933
larg = *((uint64_t *)(aggdata->dtada_data +
1934
rec->dtrd_offset));
1935
} else {
1936
/*
1937
* We don't have any prototype data. As a
1938
* result, we know that we _do_ have the
1939
* compiler-generated information. (If this
1940
* were an anonymous enabling, all of our
1941
* zero-filled data would have prototype data
1942
* -- either directly or indirectly.) So as
1943
* gross as it is, we'll grovel around in the
1944
* compiler-generated information to find the
1945
* lquantize() parameters.
1946
*/
1947
dtrace_stmtdesc_t *sdp;
1948
dt_ident_t *aid;
1949
dt_idsig_t *isp;
1950
1951
sdp = (dtrace_stmtdesc_t *)(uintptr_t)
1952
aggdesc->dtagd_rec[0].dtrd_uarg;
1953
aid = sdp->dtsd_aggdata;
1954
isp = (dt_idsig_t *)aid->di_data;
1955
assert(isp->dis_auxinfo != 0);
1956
larg = isp->dis_auxinfo;
1957
}
1958
1959
/* LINTED - alignment */
1960
*((uint64_t *)(zdata + rec->dtrd_offset)) = larg;
1961
}
1962
1963
aggdata->dtada_data = zdata;
1964
}
1965
1966
/*
1967
* Now that we've dealt with setting up our zero-filled data, we can
1968
* allocate our sorted array, and take another pass over the data to
1969
* fill it.
1970
*/
1971
sorted = dt_alloc(dtp, nentries * sizeof (dt_ahashent_t *));
1972
1973
if (sorted == NULL)
1974
goto out;
1975
1976
for (h = hash->dtah_all, i = 0; h != NULL; h = h->dtahe_nextall) {
1977
dtrace_aggvarid_t id;
1978
1979
if ((id = dt_aggregate_aggvarid(h)) > max || !map[id])
1980
continue;
1981
1982
sorted[i++] = h;
1983
}
1984
1985
assert(i == nentries);
1986
1987
/*
1988
* We've loaded our array; now we need to sort by value to allow us
1989
* to create bundles of like value. We're going to acquire the
1990
* dt_qsort_lock here, and hold it across all of our subsequent
1991
* comparison and sorting.
1992
*/
1993
(void) pthread_mutex_lock(&dt_qsort_lock);
1994
1995
qsort(sorted, nentries, sizeof (dt_ahashent_t *),
1996
dt_aggregate_keyvarcmp);
1997
1998
/*
1999
* Now we need to go through and create bundles. Because the number
2000
* of bundles is bounded by the size of the sorted array, we're going
2001
* to reuse the underlying storage. And note that "bundle" is an
2002
* array of pointers to arrays of pointers to dt_ahashent_t -- making
2003
* its type (regrettably) "dt_ahashent_t ***". (Regrettable because
2004
* '*' -- like '_' and 'X' -- should never appear in triplicate in
2005
* an ideal world.)
2006
*/
2007
bundle = (dt_ahashent_t ***)sorted;
2008
2009
for (i = 1, start = 0; i <= nentries; i++) {
2010
if (i < nentries &&
2011
dt_aggregate_keycmp(&sorted[i], &sorted[i - 1]) == 0)
2012
continue;
2013
2014
/*
2015
* We have a bundle boundary. Everything from start to
2016
* (i - 1) belongs in one bundle.
2017
*/
2018
assert(i - start <= naggvars);
2019
bundlesize = (naggvars + 2) * sizeof (dt_ahashent_t *);
2020
2021
if ((nbundle = dt_zalloc(dtp, bundlesize)) == NULL) {
2022
(void) pthread_mutex_unlock(&dt_qsort_lock);
2023
goto out;
2024
}
2025
2026
for (j = start; j < i; j++) {
2027
dtrace_aggvarid_t id = dt_aggregate_aggvarid(sorted[j]);
2028
2029
assert(id <= max);
2030
assert(map[id] != 0);
2031
assert(map[id] - 1 < naggvars);
2032
assert(nbundle[map[id] - 1] == NULL);
2033
nbundle[map[id] - 1] = sorted[j];
2034
2035
if (nbundle[naggvars] == NULL)
2036
nbundle[naggvars] = sorted[j];
2037
}
2038
2039
for (j = 0; j < naggvars; j++) {
2040
if (nbundle[j] != NULL)
2041
continue;
2042
2043
/*
2044
* Before we assume that this aggregation variable
2045
* isn't present (and fall back to using the
2046
* zero-filled data allocated earlier), check the
2047
* remap. If we have a remapping, we'll drop it in
2048
* here. Note that we might be remapping an
2049
* aggregation variable that isn't present for this
2050
* key; in this case, the aggregation data that we
2051
* copy will point to the zeroed data.
2052
*/
2053
if (remap != NULL && remap[j]) {
2054
assert(remap[j] - 1 < j);
2055
assert(nbundle[remap[j] - 1] != NULL);
2056
nbundle[j] = nbundle[remap[j] - 1];
2057
} else {
2058
nbundle[j] = &zaggdata[j];
2059
}
2060
}
2061
2062
bundle[nbundles++] = nbundle;
2063
start = i;
2064
}
2065
2066
/*
2067
* Now we need to re-sort based on the first value.
2068
*/
2069
dt_aggregate_qsort(dtp, bundle, nbundles, sizeof (dt_ahashent_t **),
2070
dt_aggregate_bundlecmp);
2071
2072
(void) pthread_mutex_unlock(&dt_qsort_lock);
2073
2074
/*
2075
* We're done! Now we just need to go back over the sorted bundles,
2076
* calling the function.
2077
*/
2078
data = alloca((naggvars + 1) * sizeof (dtrace_aggdata_t *));
2079
2080
for (i = 0; i < nbundles; i++) {
2081
for (j = 0; j < naggvars; j++)
2082
data[j + 1] = NULL;
2083
2084
for (j = 0; j < naggvars; j++) {
2085
int ndx = j - sortpos;
2086
2087
if (ndx < 0)
2088
ndx += naggvars;
2089
2090
assert(bundle[i][ndx] != NULL);
2091
data[j + 1] = &bundle[i][ndx]->dtahe_data;
2092
}
2093
2094
for (j = 0; j < naggvars; j++)
2095
assert(data[j + 1] != NULL);
2096
2097
/*
2098
* The representative key is the last element in the bundle.
2099
* Assert that we have one, and then set it to be the first
2100
* element of data.
2101
*/
2102
assert(bundle[i][j] != NULL);
2103
data[0] = &bundle[i][j]->dtahe_data;
2104
2105
if ((rval = func(data, naggvars + 1, arg)) == -1)
2106
goto out;
2107
}
2108
2109
rval = 0;
2110
out:
2111
for (i = 0; i < nbundles; i++)
2112
dt_free(dtp, bundle[i]);
2113
2114
if (zaggdata != NULL) {
2115
for (i = 0; i < naggvars; i++)
2116
dt_free(dtp, zaggdata[i].dtahe_data.dtada_data);
2117
}
2118
2119
dt_free(dtp, zaggdata);
2120
dt_free(dtp, sorted);
2121
dt_free(dtp, remap);
2122
dt_free(dtp, map);
2123
2124
return (rval);
2125
}
2126
2127
int
2128
dtrace_aggregate_print(dtrace_hdl_t *dtp, FILE *fp,
2129
dtrace_aggregate_walk_f *func)
2130
{
2131
dt_print_aggdata_t pd;
2132
2133
bzero(&pd, sizeof (pd));
2134
2135
pd.dtpa_dtp = dtp;
2136
pd.dtpa_fp = fp;
2137
pd.dtpa_allunprint = 1;
2138
2139
if (func == NULL)
2140
func = dtrace_aggregate_walk_sorted;
2141
2142
if (dtp->dt_oformat) {
2143
if ((*func)(dtp, dt_format_agg, &pd) == -1)
2144
return (dt_set_errno(dtp, dtp->dt_errno));
2145
} else {
2146
if ((*func)(dtp, dt_print_agg, &pd) == -1)
2147
return (dt_set_errno(dtp, dtp->dt_errno));
2148
}
2149
2150
return (0);
2151
}
2152
2153
void
2154
dtrace_aggregate_clear(dtrace_hdl_t *dtp)
2155
{
2156
dt_aggregate_t *agp = &dtp->dt_aggregate;
2157
dt_ahash_t *hash = &agp->dtat_hash;
2158
dt_ahashent_t *h;
2159
dtrace_aggdata_t *data;
2160
dtrace_aggdesc_t *aggdesc;
2161
dtrace_recdesc_t *rec;
2162
int i, max_cpus = agp->dtat_maxcpu;
2163
2164
for (h = hash->dtah_all; h != NULL; h = h->dtahe_nextall) {
2165
aggdesc = h->dtahe_data.dtada_desc;
2166
rec = &aggdesc->dtagd_rec[aggdesc->dtagd_nrecs - 1];
2167
data = &h->dtahe_data;
2168
2169
bzero(&data->dtada_data[rec->dtrd_offset], rec->dtrd_size);
2170
2171
if (data->dtada_percpu == NULL)
2172
continue;
2173
2174
for (i = 0; i < max_cpus; i++)
2175
bzero(data->dtada_percpu[i], rec->dtrd_size);
2176
}
2177
}
2178
2179
void
2180
dt_aggregate_destroy(dtrace_hdl_t *dtp)
2181
{
2182
dt_aggregate_t *agp = &dtp->dt_aggregate;
2183
dt_ahash_t *hash = &agp->dtat_hash;
2184
dt_ahashent_t *h, *next;
2185
dtrace_aggdata_t *aggdata;
2186
int i, max_cpus = agp->dtat_maxcpu;
2187
2188
if (hash->dtah_hash == NULL) {
2189
assert(hash->dtah_all == NULL);
2190
} else {
2191
free(hash->dtah_hash);
2192
2193
for (h = hash->dtah_all; h != NULL; h = next) {
2194
next = h->dtahe_nextall;
2195
2196
aggdata = &h->dtahe_data;
2197
2198
if (aggdata->dtada_percpu != NULL) {
2199
for (i = 0; i < max_cpus; i++)
2200
free(aggdata->dtada_percpu[i]);
2201
free(aggdata->dtada_percpu);
2202
}
2203
2204
free(aggdata->dtada_data);
2205
free(h);
2206
}
2207
2208
hash->dtah_hash = NULL;
2209
hash->dtah_all = NULL;
2210
hash->dtah_size = 0;
2211
}
2212
2213
free(agp->dtat_buf.dtbd_data);
2214
free(agp->dtat_cpus);
2215
}
2216
2217