Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/cddl/contrib/opensolaris/lib/libdtrace/common/dt_cg.c
39562 views
1
/*
2
* CDDL HEADER START
3
*
4
* The contents of this file are subject to the terms of the
5
* Common Development and Distribution License, Version 1.0 only
6
* (the "License"). You may not use this file except in compliance
7
* with the License.
8
*
9
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10
* or http://www.opensolaris.org/os/licensing.
11
* See the License for the specific language governing permissions
12
* and limitations under the License.
13
*
14
* When distributing Covered Code, include this CDDL HEADER in each
15
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16
* If applicable, add the following below this CDDL HEADER, with the
17
* fields enclosed by brackets "[]" replaced with your own identifying
18
* information: Portions Copyright [yyyy] [name of copyright owner]
19
*
20
* CDDL HEADER END
21
*/
22
23
/*
24
* Copyright 2005 Sun Microsystems, Inc. All rights reserved.
25
* Use is subject to license terms.
26
*/
27
28
/*
29
* Copyright (c) 2012 by Delphix. All rights reserved.
30
*/
31
32
#include <sys/types.h>
33
#include <sys/sysmacros.h>
34
#include <sys/isa_defs.h>
35
36
#include <strings.h>
37
#include <stdlib.h>
38
#include <setjmp.h>
39
#include <assert.h>
40
#include <errno.h>
41
42
#include <dt_impl.h>
43
#include <dt_grammar.h>
44
#include <dt_parser.h>
45
#include <dt_provider.h>
46
47
static void dt_cg_node(dt_node_t *, dt_irlist_t *, dt_regset_t *);
48
49
static dt_irnode_t *
50
dt_cg_node_alloc(uint_t label, dif_instr_t instr)
51
{
52
dt_irnode_t *dip = malloc(sizeof (dt_irnode_t));
53
54
if (dip == NULL)
55
longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM);
56
57
dip->di_label = label;
58
dip->di_instr = instr;
59
dip->di_extern = NULL;
60
dip->di_next = NULL;
61
62
return (dip);
63
}
64
65
/*
66
* Code generator wrapper function for ctf_member_info. If we are given a
67
* reference to a forward declaration tag, search the entire type space for
68
* the actual definition and then call ctf_member_info on the result.
69
*/
70
static ctf_file_t *
71
dt_cg_membinfo(ctf_file_t *fp, ctf_id_t type, const char *s, ctf_membinfo_t *mp)
72
{
73
while (ctf_type_kind(fp, type) == CTF_K_FORWARD) {
74
char n[DT_TYPE_NAMELEN];
75
dtrace_typeinfo_t dtt;
76
77
if (ctf_type_name(fp, type, n, sizeof (n)) == NULL ||
78
dt_type_lookup(n, &dtt) == -1 || (
79
dtt.dtt_ctfp == fp && dtt.dtt_type == type))
80
break; /* unable to improve our position */
81
82
fp = dtt.dtt_ctfp;
83
type = ctf_type_resolve(fp, dtt.dtt_type);
84
}
85
86
if (ctf_member_info(fp, type, s, mp) == CTF_ERR)
87
return (NULL); /* ctf_errno is set for us */
88
89
return (fp);
90
}
91
92
static void
93
dt_cg_xsetx(dt_irlist_t *dlp, dt_ident_t *idp, uint_t lbl, int reg, uint64_t x)
94
{
95
int flag = idp != NULL ? DT_INT_PRIVATE : DT_INT_SHARED;
96
int intoff = dt_inttab_insert(yypcb->pcb_inttab, x, flag);
97
dif_instr_t instr = DIF_INSTR_SETX((uint_t)intoff, reg);
98
99
if (intoff == -1)
100
longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM);
101
102
if (intoff > DIF_INTOFF_MAX)
103
longjmp(yypcb->pcb_jmpbuf, EDT_INT2BIG);
104
105
dt_irlist_append(dlp, dt_cg_node_alloc(lbl, instr));
106
107
if (idp != NULL)
108
dlp->dl_last->di_extern = idp;
109
}
110
111
static void
112
dt_cg_setx(dt_irlist_t *dlp, int reg, uint64_t x)
113
{
114
dt_cg_xsetx(dlp, NULL, DT_LBL_NONE, reg, x);
115
}
116
117
/*
118
* When loading bit-fields, we want to convert a byte count in the range
119
* 1-8 to the closest power of 2 (e.g. 3->4, 5->8, etc). The clp2() function
120
* is a clever implementation from "Hacker's Delight" by Henry Warren, Jr.
121
*/
122
static size_t
123
clp2(size_t x)
124
{
125
x--;
126
127
x |= (x >> 1);
128
x |= (x >> 2);
129
x |= (x >> 4);
130
x |= (x >> 8);
131
x |= (x >> 16);
132
133
return (x + 1);
134
}
135
136
/*
137
* Lookup the correct load opcode to use for the specified node and CTF type.
138
* We determine the size and convert it to a 3-bit index. Our lookup table
139
* is constructed to use a 5-bit index, consisting of the 3-bit size 0-7, a
140
* bit for the sign, and a bit for userland address. For example, a 4-byte
141
* signed load from userland would be at the following table index:
142
* user=1 sign=1 size=4 => binary index 11011 = decimal index 27
143
*/
144
static uint_t
145
dt_cg_load(dt_node_t *dnp, ctf_file_t *ctfp, ctf_id_t type)
146
{
147
static const uint_t ops[] = {
148
DIF_OP_LDUB, DIF_OP_LDUH, 0, DIF_OP_LDUW,
149
0, 0, 0, DIF_OP_LDX,
150
DIF_OP_LDSB, DIF_OP_LDSH, 0, DIF_OP_LDSW,
151
0, 0, 0, DIF_OP_LDX,
152
DIF_OP_ULDUB, DIF_OP_ULDUH, 0, DIF_OP_ULDUW,
153
0, 0, 0, DIF_OP_ULDX,
154
DIF_OP_ULDSB, DIF_OP_ULDSH, 0, DIF_OP_ULDSW,
155
0, 0, 0, DIF_OP_ULDX,
156
};
157
158
ctf_encoding_t e;
159
ssize_t size;
160
161
/*
162
* If we're loading a bit-field, the size of our load is found by
163
* rounding cte_bits up to a byte boundary and then finding the
164
* nearest power of two to this value (see clp2(), above).
165
*/
166
if ((dnp->dn_flags & DT_NF_BITFIELD) &&
167
ctf_type_encoding(ctfp, type, &e) != CTF_ERR)
168
size = clp2(P2ROUNDUP(e.cte_bits, NBBY) / NBBY);
169
else
170
size = ctf_type_size(ctfp, type);
171
172
if (size < 1 || size > 8 || (size & (size - 1)) != 0) {
173
xyerror(D_UNKNOWN, "internal error -- cg cannot load "
174
"size %ld when passed by value\n", (long)size);
175
}
176
177
size--; /* convert size to 3-bit index */
178
179
if (dnp->dn_flags & DT_NF_SIGNED)
180
size |= 0x08;
181
if (dnp->dn_flags & DT_NF_USERLAND)
182
size |= 0x10;
183
184
return (ops[size]);
185
}
186
187
static void
188
dt_cg_ptrsize(dt_node_t *dnp, dt_irlist_t *dlp, dt_regset_t *drp,
189
uint_t op, int dreg)
190
{
191
ctf_file_t *ctfp = dnp->dn_ctfp;
192
ctf_arinfo_t r;
193
dif_instr_t instr;
194
ctf_id_t type;
195
uint_t kind;
196
ssize_t size;
197
int sreg;
198
199
type = ctf_type_resolve(ctfp, dnp->dn_type);
200
kind = ctf_type_kind(ctfp, type);
201
assert(kind == CTF_K_POINTER || kind == CTF_K_ARRAY);
202
203
if (kind == CTF_K_ARRAY) {
204
if (ctf_array_info(ctfp, type, &r) != 0) {
205
yypcb->pcb_hdl->dt_ctferr = ctf_errno(ctfp);
206
longjmp(yypcb->pcb_jmpbuf, EDT_CTF);
207
}
208
type = r.ctr_contents;
209
} else
210
type = ctf_type_reference(ctfp, type);
211
212
if ((size = ctf_type_size(ctfp, type)) == 1)
213
return; /* multiply or divide by one can be omitted */
214
215
sreg = dt_regset_alloc(drp);
216
dt_cg_setx(dlp, sreg, size);
217
instr = DIF_INSTR_FMT(op, dreg, sreg, dreg);
218
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
219
dt_regset_free(drp, sreg);
220
}
221
222
/*
223
* If the result of a "." or "->" operation is a bit-field, we use this routine
224
* to generate an epilogue to the load instruction that extracts the value. In
225
* the diagrams below the "ld??" is the load instruction that is generated to
226
* load the containing word that is generating prior to calling this function.
227
*
228
* Epilogue for unsigned fields: Epilogue for signed fields:
229
*
230
* ldu? [r1], r1 lds? [r1], r1
231
* setx USHIFT, r2 setx 64 - SSHIFT, r2
232
* srl r1, r2, r1 sll r1, r2, r1
233
* setx (1 << bits) - 1, r2 setx 64 - bits, r2
234
* and r1, r2, r1 sra r1, r2, r1
235
*
236
* The *SHIFT constants above changes value depending on the endian-ness of our
237
* target architecture. Refer to the comments below for more details.
238
*/
239
static void
240
dt_cg_field_get(dt_node_t *dnp, dt_irlist_t *dlp, dt_regset_t *drp,
241
ctf_file_t *fp, const ctf_membinfo_t *mp)
242
{
243
ctf_encoding_t e;
244
dif_instr_t instr;
245
uint64_t shift;
246
int r1, r2;
247
248
if (ctf_type_encoding(fp, mp->ctm_type, &e) != 0 || e.cte_bits > 64) {
249
xyerror(D_UNKNOWN, "cg: bad field: off %lu type <%ld> "
250
"bits %u\n", mp->ctm_offset, mp->ctm_type, e.cte_bits);
251
}
252
253
assert(dnp->dn_op == DT_TOK_PTR || dnp->dn_op == DT_TOK_DOT);
254
r1 = dnp->dn_left->dn_reg;
255
r2 = dt_regset_alloc(drp);
256
257
/*
258
* On little-endian architectures, ctm_offset counts from the right so
259
* ctm_offset % NBBY itself is the amount we want to shift right to
260
* move the value bits to the little end of the register to mask them.
261
* On big-endian architectures, ctm_offset counts from the left so we
262
* must subtract (ctm_offset % NBBY + cte_bits) from the size in bits
263
* we used for the load. The size of our load in turn is found by
264
* rounding cte_bits up to a byte boundary and then finding the
265
* nearest power of two to this value (see clp2(), above). These
266
* properties are used to compute shift as USHIFT or SSHIFT, below.
267
*/
268
if (dnp->dn_flags & DT_NF_SIGNED) {
269
#if BYTE_ORDER == _BIG_ENDIAN
270
shift = clp2(P2ROUNDUP(e.cte_bits, NBBY) / NBBY) * NBBY -
271
mp->ctm_offset % NBBY;
272
#else
273
shift = mp->ctm_offset % NBBY + e.cte_bits;
274
#endif
275
dt_cg_setx(dlp, r2, 64 - shift);
276
instr = DIF_INSTR_FMT(DIF_OP_SLL, r1, r2, r1);
277
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
278
279
dt_cg_setx(dlp, r2, 64 - e.cte_bits);
280
instr = DIF_INSTR_FMT(DIF_OP_SRA, r1, r2, r1);
281
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
282
} else {
283
#if BYTE_ORDER == _BIG_ENDIAN
284
shift = clp2(P2ROUNDUP(e.cte_bits, NBBY) / NBBY) * NBBY -
285
(mp->ctm_offset % NBBY + e.cte_bits);
286
#else
287
shift = mp->ctm_offset % NBBY;
288
#endif
289
dt_cg_setx(dlp, r2, shift);
290
instr = DIF_INSTR_FMT(DIF_OP_SRL, r1, r2, r1);
291
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
292
293
dt_cg_setx(dlp, r2, (1ULL << e.cte_bits) - 1);
294
instr = DIF_INSTR_FMT(DIF_OP_AND, r1, r2, r1);
295
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
296
}
297
298
dt_regset_free(drp, r2);
299
}
300
301
/*
302
* If the destination of a store operation is a bit-field, we use this routine
303
* to generate a prologue to the store instruction that loads the surrounding
304
* bits, clears the destination field, and ORs in the new value of the field.
305
* In the diagram below the "st?" is the store instruction that is generated to
306
* store the containing word that is generating after calling this function.
307
*
308
* ld [dst->dn_reg], r1
309
* setx ~(((1 << cte_bits) - 1) << (ctm_offset % NBBY)), r2
310
* and r1, r2, r1
311
*
312
* setx (1 << cte_bits) - 1, r2
313
* and src->dn_reg, r2, r2
314
* setx ctm_offset % NBBY, r3
315
* sll r2, r3, r2
316
*
317
* or r1, r2, r1
318
* st? r1, [dst->dn_reg]
319
*
320
* This routine allocates a new register to hold the value to be stored and
321
* returns it. The caller is responsible for freeing this register later.
322
*/
323
static int
324
dt_cg_field_set(dt_node_t *src, dt_irlist_t *dlp,
325
dt_regset_t *drp, dt_node_t *dst)
326
{
327
uint64_t cmask, fmask, shift;
328
dif_instr_t instr;
329
int r1, r2, r3;
330
331
ctf_membinfo_t m;
332
ctf_encoding_t e;
333
ctf_file_t *fp, *ofp;
334
ctf_id_t type;
335
336
assert(dst->dn_op == DT_TOK_PTR || dst->dn_op == DT_TOK_DOT);
337
assert(dst->dn_right->dn_kind == DT_NODE_IDENT);
338
339
fp = dst->dn_left->dn_ctfp;
340
type = ctf_type_resolve(fp, dst->dn_left->dn_type);
341
342
if (dst->dn_op == DT_TOK_PTR) {
343
type = ctf_type_reference(fp, type);
344
type = ctf_type_resolve(fp, type);
345
}
346
347
if ((fp = dt_cg_membinfo(ofp = fp, type,
348
dst->dn_right->dn_string, &m)) == NULL) {
349
yypcb->pcb_hdl->dt_ctferr = ctf_errno(ofp);
350
longjmp(yypcb->pcb_jmpbuf, EDT_CTF);
351
}
352
353
if (ctf_type_encoding(fp, m.ctm_type, &e) != 0 || e.cte_bits > 64) {
354
xyerror(D_UNKNOWN, "cg: bad field: off %lu type <%ld> "
355
"bits %u\n", m.ctm_offset, m.ctm_type, e.cte_bits);
356
}
357
358
r1 = dt_regset_alloc(drp);
359
r2 = dt_regset_alloc(drp);
360
r3 = dt_regset_alloc(drp);
361
362
/*
363
* Compute shifts and masks. We need to compute "shift" as the amount
364
* we need to shift left to position our field in the containing word.
365
* Refer to the comments in dt_cg_field_get(), above, for more info.
366
* We then compute fmask as the mask that truncates the value in the
367
* input register to width cte_bits, and cmask as the mask used to
368
* pass through the containing bits and zero the field bits.
369
*/
370
#if BYTE_ORDER == _BIG_ENDIAN
371
shift = clp2(P2ROUNDUP(e.cte_bits, NBBY) / NBBY) * NBBY -
372
(m.ctm_offset % NBBY + e.cte_bits);
373
#else
374
shift = m.ctm_offset % NBBY;
375
#endif
376
fmask = (1ULL << e.cte_bits) - 1;
377
cmask = ~(fmask << shift);
378
379
instr = DIF_INSTR_LOAD(
380
dt_cg_load(dst, fp, m.ctm_type), dst->dn_reg, r1);
381
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
382
383
dt_cg_setx(dlp, r2, cmask);
384
instr = DIF_INSTR_FMT(DIF_OP_AND, r1, r2, r1);
385
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
386
387
dt_cg_setx(dlp, r2, fmask);
388
instr = DIF_INSTR_FMT(DIF_OP_AND, src->dn_reg, r2, r2);
389
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
390
391
dt_cg_setx(dlp, r3, shift);
392
instr = DIF_INSTR_FMT(DIF_OP_SLL, r2, r3, r2);
393
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
394
395
instr = DIF_INSTR_FMT(DIF_OP_OR, r1, r2, r1);
396
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
397
398
dt_regset_free(drp, r3);
399
dt_regset_free(drp, r2);
400
401
return (r1);
402
}
403
404
static void
405
dt_cg_store(dt_node_t *src, dt_irlist_t *dlp, dt_regset_t *drp, dt_node_t *dst)
406
{
407
ctf_encoding_t e;
408
dif_instr_t instr;
409
size_t size;
410
int reg;
411
412
/*
413
* If we're loading a bit-field, the size of our store is found by
414
* rounding dst's cte_bits up to a byte boundary and then finding the
415
* nearest power of two to this value (see clp2(), above).
416
*/
417
if ((dst->dn_flags & DT_NF_BITFIELD) &&
418
ctf_type_encoding(dst->dn_ctfp, dst->dn_type, &e) != CTF_ERR)
419
size = clp2(P2ROUNDUP(e.cte_bits, NBBY) / NBBY);
420
else
421
size = dt_node_type_size(src);
422
423
if (src->dn_flags & DT_NF_REF) {
424
reg = dt_regset_alloc(drp);
425
dt_cg_setx(dlp, reg, size);
426
instr = DIF_INSTR_COPYS(src->dn_reg, reg, dst->dn_reg);
427
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
428
dt_regset_free(drp, reg);
429
} else {
430
if (dst->dn_flags & DT_NF_BITFIELD)
431
reg = dt_cg_field_set(src, dlp, drp, dst);
432
else
433
reg = src->dn_reg;
434
435
switch (size) {
436
case 1:
437
instr = DIF_INSTR_STORE(DIF_OP_STB, reg, dst->dn_reg);
438
break;
439
case 2:
440
instr = DIF_INSTR_STORE(DIF_OP_STH, reg, dst->dn_reg);
441
break;
442
case 4:
443
instr = DIF_INSTR_STORE(DIF_OP_STW, reg, dst->dn_reg);
444
break;
445
case 8:
446
instr = DIF_INSTR_STORE(DIF_OP_STX, reg, dst->dn_reg);
447
break;
448
default:
449
xyerror(D_UNKNOWN, "internal error -- cg cannot store "
450
"size %lu when passed by value\n", (ulong_t)size);
451
}
452
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
453
454
if (dst->dn_flags & DT_NF_BITFIELD)
455
dt_regset_free(drp, reg);
456
}
457
}
458
459
/*
460
* Generate code for a typecast or for argument promotion from the type of the
461
* actual to the type of the formal. We need to generate code for casts when
462
* a scalar type is being narrowed or changing signed-ness. We first shift the
463
* desired bits high (losing excess bits if narrowing) and then shift them down
464
* using logical shift (unsigned result) or arithmetic shift (signed result).
465
*/
466
static void
467
dt_cg_typecast(const dt_node_t *src, const dt_node_t *dst,
468
dt_irlist_t *dlp, dt_regset_t *drp)
469
{
470
size_t srcsize = dt_node_type_size(src);
471
size_t dstsize = dt_node_type_size(dst);
472
473
dif_instr_t instr;
474
int rg;
475
476
if (!dt_node_is_scalar(dst))
477
return; /* not a scalar */
478
if (dstsize == srcsize &&
479
((src->dn_flags ^ dst->dn_flags) & DT_NF_SIGNED) != 0)
480
return; /* not narrowing or changing signed-ness */
481
if (dstsize > srcsize && (src->dn_flags & DT_NF_SIGNED) == 0)
482
return; /* nothing to do in this case */
483
484
rg = dt_regset_alloc(drp);
485
486
if (dstsize > srcsize) {
487
int n = sizeof (uint64_t) * NBBY - srcsize * NBBY;
488
int s = (dstsize - srcsize) * NBBY;
489
490
dt_cg_setx(dlp, rg, n);
491
492
instr = DIF_INSTR_FMT(DIF_OP_SLL, src->dn_reg, rg, dst->dn_reg);
493
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
494
495
if ((dst->dn_flags & DT_NF_SIGNED) || n == s) {
496
instr = DIF_INSTR_FMT(DIF_OP_SRA,
497
dst->dn_reg, rg, dst->dn_reg);
498
dt_irlist_append(dlp,
499
dt_cg_node_alloc(DT_LBL_NONE, instr));
500
} else {
501
dt_cg_setx(dlp, rg, s);
502
instr = DIF_INSTR_FMT(DIF_OP_SRA,
503
dst->dn_reg, rg, dst->dn_reg);
504
dt_irlist_append(dlp,
505
dt_cg_node_alloc(DT_LBL_NONE, instr));
506
dt_cg_setx(dlp, rg, n - s);
507
instr = DIF_INSTR_FMT(DIF_OP_SRL,
508
dst->dn_reg, rg, dst->dn_reg);
509
dt_irlist_append(dlp,
510
dt_cg_node_alloc(DT_LBL_NONE, instr));
511
}
512
} else if (dstsize != sizeof (uint64_t)) {
513
int n = sizeof (uint64_t) * NBBY - dstsize * NBBY;
514
515
dt_cg_setx(dlp, rg, n);
516
517
instr = DIF_INSTR_FMT(DIF_OP_SLL, src->dn_reg, rg, dst->dn_reg);
518
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
519
520
instr = DIF_INSTR_FMT((dst->dn_flags & DT_NF_SIGNED) ?
521
DIF_OP_SRA : DIF_OP_SRL, dst->dn_reg, rg, dst->dn_reg);
522
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
523
}
524
525
dt_regset_free(drp, rg);
526
}
527
528
/*
529
* Generate code to push the specified argument list on to the tuple stack.
530
* We use this routine for handling subroutine calls and associative arrays.
531
* We must first generate code for all subexpressions before loading the stack
532
* because any subexpression could itself require the use of the tuple stack.
533
* This holds a number of registers equal to the number of arguments, but this
534
* is not a huge problem because the number of arguments can't exceed the
535
* number of tuple register stack elements anyway. At most one extra register
536
* is required (either by dt_cg_typecast() or for dtdt_size, below). This
537
* implies that a DIF implementation should offer a number of general purpose
538
* registers at least one greater than the number of tuple registers.
539
*/
540
static void
541
dt_cg_arglist(dt_ident_t *idp, dt_node_t *args,
542
dt_irlist_t *dlp, dt_regset_t *drp)
543
{
544
const dt_idsig_t *isp = idp->di_data;
545
dt_node_t *dnp;
546
int i = 0;
547
548
for (dnp = args; dnp != NULL; dnp = dnp->dn_list)
549
dt_cg_node(dnp, dlp, drp);
550
551
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, DIF_INSTR_FLUSHTS));
552
553
for (dnp = args; dnp != NULL; dnp = dnp->dn_list, i++) {
554
dtrace_diftype_t t;
555
dif_instr_t instr;
556
uint_t op;
557
int reg;
558
559
dt_node_diftype(yypcb->pcb_hdl, dnp, &t);
560
561
isp->dis_args[i].dn_reg = dnp->dn_reg; /* re-use register */
562
dt_cg_typecast(dnp, &isp->dis_args[i], dlp, drp);
563
isp->dis_args[i].dn_reg = -1;
564
565
if (t.dtdt_flags & DIF_TF_BYREF) {
566
op = DIF_OP_PUSHTR;
567
if (t.dtdt_size != 0) {
568
reg = dt_regset_alloc(drp);
569
dt_cg_setx(dlp, reg, t.dtdt_size);
570
} else {
571
reg = DIF_REG_R0;
572
}
573
} else {
574
op = DIF_OP_PUSHTV;
575
reg = DIF_REG_R0;
576
}
577
578
instr = DIF_INSTR_PUSHTS(op, t.dtdt_kind, reg, dnp->dn_reg);
579
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
580
dt_regset_free(drp, dnp->dn_reg);
581
582
if (reg != DIF_REG_R0)
583
dt_regset_free(drp, reg);
584
}
585
586
if (i > yypcb->pcb_hdl->dt_conf.dtc_diftupregs)
587
longjmp(yypcb->pcb_jmpbuf, EDT_NOTUPREG);
588
}
589
590
static void
591
dt_cg_arithmetic_op(dt_node_t *dnp, dt_irlist_t *dlp,
592
dt_regset_t *drp, uint_t op)
593
{
594
int is_ptr_op = (dnp->dn_op == DT_TOK_ADD || dnp->dn_op == DT_TOK_SUB ||
595
dnp->dn_op == DT_TOK_ADD_EQ || dnp->dn_op == DT_TOK_SUB_EQ);
596
597
int lp_is_ptr = dt_node_is_pointer(dnp->dn_left);
598
int rp_is_ptr = dt_node_is_pointer(dnp->dn_right);
599
600
dif_instr_t instr;
601
602
if (lp_is_ptr && rp_is_ptr) {
603
assert(dnp->dn_op == DT_TOK_SUB);
604
is_ptr_op = 0;
605
}
606
607
dt_cg_node(dnp->dn_left, dlp, drp);
608
if (is_ptr_op && rp_is_ptr)
609
dt_cg_ptrsize(dnp, dlp, drp, DIF_OP_MUL, dnp->dn_left->dn_reg);
610
611
dt_cg_node(dnp->dn_right, dlp, drp);
612
if (is_ptr_op && lp_is_ptr)
613
dt_cg_ptrsize(dnp, dlp, drp, DIF_OP_MUL, dnp->dn_right->dn_reg);
614
615
instr = DIF_INSTR_FMT(op, dnp->dn_left->dn_reg,
616
dnp->dn_right->dn_reg, dnp->dn_left->dn_reg);
617
618
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
619
dt_regset_free(drp, dnp->dn_right->dn_reg);
620
dnp->dn_reg = dnp->dn_left->dn_reg;
621
622
if (lp_is_ptr && rp_is_ptr)
623
dt_cg_ptrsize(dnp->dn_right,
624
dlp, drp, DIF_OP_UDIV, dnp->dn_reg);
625
}
626
627
static uint_t
628
dt_cg_stvar(const dt_ident_t *idp)
629
{
630
static const uint_t aops[] = { DIF_OP_STGAA, DIF_OP_STTAA, DIF_OP_NOP };
631
static const uint_t sops[] = { DIF_OP_STGS, DIF_OP_STTS, DIF_OP_STLS };
632
633
uint_t i = (((idp->di_flags & DT_IDFLG_LOCAL) != 0) << 1) |
634
((idp->di_flags & DT_IDFLG_TLS) != 0);
635
636
return (idp->di_kind == DT_IDENT_ARRAY ? aops[i] : sops[i]);
637
}
638
639
static void
640
dt_cg_prearith_op(dt_node_t *dnp, dt_irlist_t *dlp, dt_regset_t *drp, uint_t op)
641
{
642
ctf_file_t *ctfp = dnp->dn_ctfp;
643
dif_instr_t instr;
644
ctf_id_t type;
645
ssize_t size = 1;
646
int reg;
647
648
if (dt_node_is_pointer(dnp)) {
649
type = ctf_type_resolve(ctfp, dnp->dn_type);
650
assert(ctf_type_kind(ctfp, type) == CTF_K_POINTER);
651
size = ctf_type_size(ctfp, ctf_type_reference(ctfp, type));
652
}
653
654
dt_cg_node(dnp->dn_child, dlp, drp);
655
dnp->dn_reg = dnp->dn_child->dn_reg;
656
657
reg = dt_regset_alloc(drp);
658
dt_cg_setx(dlp, reg, size);
659
660
instr = DIF_INSTR_FMT(op, dnp->dn_reg, reg, dnp->dn_reg);
661
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
662
dt_regset_free(drp, reg);
663
664
/*
665
* If we are modifying a variable, generate an stv instruction from
666
* the variable specified by the identifier. If we are storing to a
667
* memory address, generate code again for the left-hand side using
668
* DT_NF_REF to get the address, and then generate a store to it.
669
* In both paths, we store the value in dnp->dn_reg (the new value).
670
*/
671
if (dnp->dn_child->dn_kind == DT_NODE_VAR) {
672
dt_ident_t *idp = dt_ident_resolve(dnp->dn_child->dn_ident);
673
674
idp->di_flags |= DT_IDFLG_DIFW;
675
instr = DIF_INSTR_STV(dt_cg_stvar(idp),
676
idp->di_id, dnp->dn_reg);
677
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
678
} else {
679
uint_t rbit = dnp->dn_child->dn_flags & DT_NF_REF;
680
681
assert(dnp->dn_child->dn_flags & DT_NF_WRITABLE);
682
assert(dnp->dn_child->dn_flags & DT_NF_LVALUE);
683
684
dnp->dn_child->dn_flags |= DT_NF_REF; /* force pass-by-ref */
685
dt_cg_node(dnp->dn_child, dlp, drp);
686
687
dt_cg_store(dnp, dlp, drp, dnp->dn_child);
688
dt_regset_free(drp, dnp->dn_child->dn_reg);
689
690
dnp->dn_left->dn_flags &= ~DT_NF_REF;
691
dnp->dn_left->dn_flags |= rbit;
692
}
693
}
694
695
static void
696
dt_cg_postarith_op(dt_node_t *dnp, dt_irlist_t *dlp,
697
dt_regset_t *drp, uint_t op)
698
{
699
ctf_file_t *ctfp = dnp->dn_ctfp;
700
dif_instr_t instr;
701
ctf_id_t type;
702
ssize_t size = 1;
703
int nreg;
704
705
if (dt_node_is_pointer(dnp)) {
706
type = ctf_type_resolve(ctfp, dnp->dn_type);
707
assert(ctf_type_kind(ctfp, type) == CTF_K_POINTER);
708
size = ctf_type_size(ctfp, ctf_type_reference(ctfp, type));
709
}
710
711
dt_cg_node(dnp->dn_child, dlp, drp);
712
dnp->dn_reg = dnp->dn_child->dn_reg;
713
714
nreg = dt_regset_alloc(drp);
715
dt_cg_setx(dlp, nreg, size);
716
instr = DIF_INSTR_FMT(op, dnp->dn_reg, nreg, nreg);
717
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
718
719
/*
720
* If we are modifying a variable, generate an stv instruction from
721
* the variable specified by the identifier. If we are storing to a
722
* memory address, generate code again for the left-hand side using
723
* DT_NF_REF to get the address, and then generate a store to it.
724
* In both paths, we store the value from 'nreg' (the new value).
725
*/
726
if (dnp->dn_child->dn_kind == DT_NODE_VAR) {
727
dt_ident_t *idp = dt_ident_resolve(dnp->dn_child->dn_ident);
728
729
idp->di_flags |= DT_IDFLG_DIFW;
730
instr = DIF_INSTR_STV(dt_cg_stvar(idp), idp->di_id, nreg);
731
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
732
} else {
733
uint_t rbit = dnp->dn_child->dn_flags & DT_NF_REF;
734
int oreg = dnp->dn_reg;
735
736
assert(dnp->dn_child->dn_flags & DT_NF_WRITABLE);
737
assert(dnp->dn_child->dn_flags & DT_NF_LVALUE);
738
739
dnp->dn_child->dn_flags |= DT_NF_REF; /* force pass-by-ref */
740
dt_cg_node(dnp->dn_child, dlp, drp);
741
742
dnp->dn_reg = nreg;
743
dt_cg_store(dnp, dlp, drp, dnp->dn_child);
744
dnp->dn_reg = oreg;
745
746
dt_regset_free(drp, dnp->dn_child->dn_reg);
747
dnp->dn_left->dn_flags &= ~DT_NF_REF;
748
dnp->dn_left->dn_flags |= rbit;
749
}
750
751
dt_regset_free(drp, nreg);
752
}
753
754
/*
755
* Determine if we should perform signed or unsigned comparison for an OP2.
756
* If both operands are of arithmetic type, perform the usual arithmetic
757
* conversions to determine the common real type for comparison [ISOC 6.5.8.3].
758
*/
759
static int
760
dt_cg_compare_signed(dt_node_t *dnp)
761
{
762
dt_node_t dn;
763
764
if (dt_node_is_string(dnp->dn_left) ||
765
dt_node_is_string(dnp->dn_right))
766
return (1); /* strings always compare signed */
767
else if (!dt_node_is_arith(dnp->dn_left) ||
768
!dt_node_is_arith(dnp->dn_right))
769
return (0); /* non-arithmetic types always compare unsigned */
770
771
bzero(&dn, sizeof (dn));
772
dt_node_promote(dnp->dn_left, dnp->dn_right, &dn);
773
return (dn.dn_flags & DT_NF_SIGNED);
774
}
775
776
static void
777
dt_cg_compare_op(dt_node_t *dnp, dt_irlist_t *dlp, dt_regset_t *drp, uint_t op)
778
{
779
uint_t lbl_true = dt_irlist_label(dlp);
780
uint_t lbl_post = dt_irlist_label(dlp);
781
782
dif_instr_t instr;
783
uint_t opc;
784
785
dt_cg_node(dnp->dn_left, dlp, drp);
786
dt_cg_node(dnp->dn_right, dlp, drp);
787
788
if (dt_node_is_string(dnp->dn_left) || dt_node_is_string(dnp->dn_right))
789
opc = DIF_OP_SCMP;
790
else
791
opc = DIF_OP_CMP;
792
793
instr = DIF_INSTR_CMP(opc, dnp->dn_left->dn_reg, dnp->dn_right->dn_reg);
794
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
795
dt_regset_free(drp, dnp->dn_right->dn_reg);
796
dnp->dn_reg = dnp->dn_left->dn_reg;
797
798
instr = DIF_INSTR_BRANCH(op, lbl_true);
799
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
800
801
instr = DIF_INSTR_MOV(DIF_REG_R0, dnp->dn_reg);
802
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
803
804
instr = DIF_INSTR_BRANCH(DIF_OP_BA, lbl_post);
805
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
806
807
dt_cg_xsetx(dlp, NULL, lbl_true, dnp->dn_reg, 1);
808
dt_irlist_append(dlp, dt_cg_node_alloc(lbl_post, DIF_INSTR_NOP));
809
}
810
811
/*
812
* Code generation for the ternary op requires some trickery with the assembler
813
* in order to conserve registers. We generate code for dn_expr and dn_left
814
* and free their registers so they do not have be consumed across codegen for
815
* dn_right. We insert a dummy MOV at the end of dn_left into the destination
816
* register, which is not yet known because we haven't done dn_right yet, and
817
* save the pointer to this instruction node. We then generate code for
818
* dn_right and use its register as our output. Finally, we reach back and
819
* patch the instruction for dn_left to move its output into this register.
820
*/
821
static void
822
dt_cg_ternary_op(dt_node_t *dnp, dt_irlist_t *dlp, dt_regset_t *drp)
823
{
824
uint_t lbl_false = dt_irlist_label(dlp);
825
uint_t lbl_post = dt_irlist_label(dlp);
826
827
dif_instr_t instr;
828
dt_irnode_t *dip;
829
830
dt_cg_node(dnp->dn_expr, dlp, drp);
831
instr = DIF_INSTR_TST(dnp->dn_expr->dn_reg);
832
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
833
dt_regset_free(drp, dnp->dn_expr->dn_reg);
834
835
instr = DIF_INSTR_BRANCH(DIF_OP_BE, lbl_false);
836
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
837
838
dt_cg_node(dnp->dn_left, dlp, drp);
839
instr = DIF_INSTR_MOV(dnp->dn_left->dn_reg, DIF_REG_R0);
840
dip = dt_cg_node_alloc(DT_LBL_NONE, instr); /* save dip for below */
841
dt_irlist_append(dlp, dip);
842
dt_regset_free(drp, dnp->dn_left->dn_reg);
843
844
instr = DIF_INSTR_BRANCH(DIF_OP_BA, lbl_post);
845
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
846
847
dt_irlist_append(dlp, dt_cg_node_alloc(lbl_false, DIF_INSTR_NOP));
848
dt_cg_node(dnp->dn_right, dlp, drp);
849
dnp->dn_reg = dnp->dn_right->dn_reg;
850
851
/*
852
* Now that dn_reg is assigned, reach back and patch the correct MOV
853
* instruction into the tail of dn_left. We know dn_reg was unused
854
* at that point because otherwise dn_right couldn't have allocated it.
855
*/
856
dip->di_instr = DIF_INSTR_MOV(dnp->dn_left->dn_reg, dnp->dn_reg);
857
dt_irlist_append(dlp, dt_cg_node_alloc(lbl_post, DIF_INSTR_NOP));
858
}
859
860
static void
861
dt_cg_logical_and(dt_node_t *dnp, dt_irlist_t *dlp, dt_regset_t *drp)
862
{
863
uint_t lbl_false = dt_irlist_label(dlp);
864
uint_t lbl_post = dt_irlist_label(dlp);
865
866
dif_instr_t instr;
867
868
dt_cg_node(dnp->dn_left, dlp, drp);
869
instr = DIF_INSTR_TST(dnp->dn_left->dn_reg);
870
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
871
dt_regset_free(drp, dnp->dn_left->dn_reg);
872
873
instr = DIF_INSTR_BRANCH(DIF_OP_BE, lbl_false);
874
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
875
876
dt_cg_node(dnp->dn_right, dlp, drp);
877
instr = DIF_INSTR_TST(dnp->dn_right->dn_reg);
878
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
879
dnp->dn_reg = dnp->dn_right->dn_reg;
880
881
instr = DIF_INSTR_BRANCH(DIF_OP_BE, lbl_false);
882
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
883
884
dt_cg_setx(dlp, dnp->dn_reg, 1);
885
886
instr = DIF_INSTR_BRANCH(DIF_OP_BA, lbl_post);
887
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
888
889
instr = DIF_INSTR_MOV(DIF_REG_R0, dnp->dn_reg);
890
dt_irlist_append(dlp, dt_cg_node_alloc(lbl_false, instr));
891
892
dt_irlist_append(dlp, dt_cg_node_alloc(lbl_post, DIF_INSTR_NOP));
893
}
894
895
static void
896
dt_cg_logical_xor(dt_node_t *dnp, dt_irlist_t *dlp, dt_regset_t *drp)
897
{
898
uint_t lbl_next = dt_irlist_label(dlp);
899
uint_t lbl_tail = dt_irlist_label(dlp);
900
901
dif_instr_t instr;
902
903
dt_cg_node(dnp->dn_left, dlp, drp);
904
instr = DIF_INSTR_TST(dnp->dn_left->dn_reg);
905
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
906
907
instr = DIF_INSTR_BRANCH(DIF_OP_BE, lbl_next);
908
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
909
dt_cg_setx(dlp, dnp->dn_left->dn_reg, 1);
910
911
dt_irlist_append(dlp, dt_cg_node_alloc(lbl_next, DIF_INSTR_NOP));
912
dt_cg_node(dnp->dn_right, dlp, drp);
913
914
instr = DIF_INSTR_TST(dnp->dn_right->dn_reg);
915
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
916
917
instr = DIF_INSTR_BRANCH(DIF_OP_BE, lbl_tail);
918
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
919
dt_cg_setx(dlp, dnp->dn_right->dn_reg, 1);
920
921
instr = DIF_INSTR_FMT(DIF_OP_XOR, dnp->dn_left->dn_reg,
922
dnp->dn_right->dn_reg, dnp->dn_left->dn_reg);
923
924
dt_irlist_append(dlp, dt_cg_node_alloc(lbl_tail, instr));
925
926
dt_regset_free(drp, dnp->dn_right->dn_reg);
927
dnp->dn_reg = dnp->dn_left->dn_reg;
928
}
929
930
static void
931
dt_cg_logical_or(dt_node_t *dnp, dt_irlist_t *dlp, dt_regset_t *drp)
932
{
933
uint_t lbl_true = dt_irlist_label(dlp);
934
uint_t lbl_false = dt_irlist_label(dlp);
935
uint_t lbl_post = dt_irlist_label(dlp);
936
937
dif_instr_t instr;
938
939
dt_cg_node(dnp->dn_left, dlp, drp);
940
instr = DIF_INSTR_TST(dnp->dn_left->dn_reg);
941
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
942
dt_regset_free(drp, dnp->dn_left->dn_reg);
943
944
instr = DIF_INSTR_BRANCH(DIF_OP_BNE, lbl_true);
945
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
946
947
dt_cg_node(dnp->dn_right, dlp, drp);
948
instr = DIF_INSTR_TST(dnp->dn_right->dn_reg);
949
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
950
dnp->dn_reg = dnp->dn_right->dn_reg;
951
952
instr = DIF_INSTR_BRANCH(DIF_OP_BE, lbl_false);
953
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
954
955
dt_cg_xsetx(dlp, NULL, lbl_true, dnp->dn_reg, 1);
956
957
instr = DIF_INSTR_BRANCH(DIF_OP_BA, lbl_post);
958
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
959
960
instr = DIF_INSTR_MOV(DIF_REG_R0, dnp->dn_reg);
961
dt_irlist_append(dlp, dt_cg_node_alloc(lbl_false, instr));
962
963
dt_irlist_append(dlp, dt_cg_node_alloc(lbl_post, DIF_INSTR_NOP));
964
}
965
966
static void
967
dt_cg_logical_neg(dt_node_t *dnp, dt_irlist_t *dlp, dt_regset_t *drp)
968
{
969
uint_t lbl_zero = dt_irlist_label(dlp);
970
uint_t lbl_post = dt_irlist_label(dlp);
971
972
dif_instr_t instr;
973
974
dt_cg_node(dnp->dn_child, dlp, drp);
975
dnp->dn_reg = dnp->dn_child->dn_reg;
976
977
instr = DIF_INSTR_TST(dnp->dn_reg);
978
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
979
980
instr = DIF_INSTR_BRANCH(DIF_OP_BE, lbl_zero);
981
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
982
983
instr = DIF_INSTR_MOV(DIF_REG_R0, dnp->dn_reg);
984
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
985
986
instr = DIF_INSTR_BRANCH(DIF_OP_BA, lbl_post);
987
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
988
989
dt_cg_xsetx(dlp, NULL, lbl_zero, dnp->dn_reg, 1);
990
dt_irlist_append(dlp, dt_cg_node_alloc(lbl_post, DIF_INSTR_NOP));
991
}
992
993
static void
994
dt_cg_asgn_op(dt_node_t *dnp, dt_irlist_t *dlp, dt_regset_t *drp)
995
{
996
dif_instr_t instr;
997
dt_ident_t *idp;
998
999
/*
1000
* If we are performing a structure assignment of a translated type,
1001
* we must instantiate all members and create a snapshot of the object
1002
* in scratch space. We allocs a chunk of memory, generate code for
1003
* each member, and then set dnp->dn_reg to the scratch object address.
1004
*/
1005
if ((idp = dt_node_resolve(dnp->dn_right, DT_IDENT_XLSOU)) != NULL) {
1006
ctf_membinfo_t ctm;
1007
dt_xlator_t *dxp = idp->di_data;
1008
dt_node_t *mnp, dn, mn;
1009
int r1, r2;
1010
1011
/*
1012
* Create two fake dt_node_t's representing operator "." and a
1013
* right-hand identifier child node. These will be repeatedly
1014
* modified according to each instantiated member so that we
1015
* can pass them to dt_cg_store() and effect a member store.
1016
*/
1017
bzero(&dn, sizeof (dt_node_t));
1018
dn.dn_kind = DT_NODE_OP2;
1019
dn.dn_op = DT_TOK_DOT;
1020
dn.dn_left = dnp;
1021
dn.dn_right = &mn;
1022
1023
bzero(&mn, sizeof (dt_node_t));
1024
mn.dn_kind = DT_NODE_IDENT;
1025
mn.dn_op = DT_TOK_IDENT;
1026
1027
/*
1028
* Allocate a register for our scratch data pointer. First we
1029
* set it to the size of our data structure, and then replace
1030
* it with the result of an allocs of the specified size.
1031
*/
1032
r1 = dt_regset_alloc(drp);
1033
dt_cg_setx(dlp, r1,
1034
ctf_type_size(dxp->dx_dst_ctfp, dxp->dx_dst_base));
1035
1036
instr = DIF_INSTR_ALLOCS(r1, r1);
1037
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
1038
1039
/*
1040
* When dt_cg_asgn_op() is called, we have already generated
1041
* code for dnp->dn_right, which is the translator input. We
1042
* now associate this register with the translator's input
1043
* identifier so it can be referenced during our member loop.
1044
*/
1045
dxp->dx_ident->di_flags |= DT_IDFLG_CGREG;
1046
dxp->dx_ident->di_id = dnp->dn_right->dn_reg;
1047
1048
for (mnp = dxp->dx_members; mnp != NULL; mnp = mnp->dn_list) {
1049
/*
1050
* Generate code for the translator member expression,
1051
* and then cast the result to the member type.
1052
*/
1053
dt_cg_node(mnp->dn_membexpr, dlp, drp);
1054
mnp->dn_reg = mnp->dn_membexpr->dn_reg;
1055
dt_cg_typecast(mnp->dn_membexpr, mnp, dlp, drp);
1056
1057
/*
1058
* Ask CTF for the offset of the member so we can store
1059
* to the appropriate offset. This call has already
1060
* been done once by the parser, so it should succeed.
1061
*/
1062
if (ctf_member_info(dxp->dx_dst_ctfp, dxp->dx_dst_base,
1063
mnp->dn_membname, &ctm) == CTF_ERR) {
1064
yypcb->pcb_hdl->dt_ctferr =
1065
ctf_errno(dxp->dx_dst_ctfp);
1066
longjmp(yypcb->pcb_jmpbuf, EDT_CTF);
1067
}
1068
1069
/*
1070
* If the destination member is at offset 0, store the
1071
* result directly to r1 (the scratch buffer address).
1072
* Otherwise allocate another temporary for the offset
1073
* and add r1 to it before storing the result.
1074
*/
1075
if (ctm.ctm_offset != 0) {
1076
r2 = dt_regset_alloc(drp);
1077
1078
/*
1079
* Add the member offset rounded down to the
1080
* nearest byte. If the offset was not aligned
1081
* on a byte boundary, this member is a bit-
1082
* field and dt_cg_store() will handle masking.
1083
*/
1084
dt_cg_setx(dlp, r2, ctm.ctm_offset / NBBY);
1085
instr = DIF_INSTR_FMT(DIF_OP_ADD, r1, r2, r2);
1086
dt_irlist_append(dlp,
1087
dt_cg_node_alloc(DT_LBL_NONE, instr));
1088
1089
dt_node_type_propagate(mnp, &dn);
1090
dn.dn_right->dn_string = mnp->dn_membname;
1091
dn.dn_reg = r2;
1092
1093
dt_cg_store(mnp, dlp, drp, &dn);
1094
dt_regset_free(drp, r2);
1095
1096
} else {
1097
dt_node_type_propagate(mnp, &dn);
1098
dn.dn_right->dn_string = mnp->dn_membname;
1099
dn.dn_reg = r1;
1100
1101
dt_cg_store(mnp, dlp, drp, &dn);
1102
}
1103
1104
dt_regset_free(drp, mnp->dn_reg);
1105
}
1106
1107
dxp->dx_ident->di_flags &= ~DT_IDFLG_CGREG;
1108
dxp->dx_ident->di_id = 0;
1109
1110
if (dnp->dn_right->dn_reg != -1)
1111
dt_regset_free(drp, dnp->dn_right->dn_reg);
1112
1113
assert(dnp->dn_reg == dnp->dn_right->dn_reg);
1114
dnp->dn_reg = r1;
1115
}
1116
1117
/*
1118
* If we are storing to a variable, generate an stv instruction from
1119
* the variable specified by the identifier. If we are storing to a
1120
* memory address, generate code again for the left-hand side using
1121
* DT_NF_REF to get the address, and then generate a store to it.
1122
* In both paths, we assume dnp->dn_reg already has the new value.
1123
*/
1124
if (dnp->dn_left->dn_kind == DT_NODE_VAR) {
1125
idp = dt_ident_resolve(dnp->dn_left->dn_ident);
1126
1127
if (idp->di_kind == DT_IDENT_ARRAY)
1128
dt_cg_arglist(idp, dnp->dn_left->dn_args, dlp, drp);
1129
1130
idp->di_flags |= DT_IDFLG_DIFW;
1131
instr = DIF_INSTR_STV(dt_cg_stvar(idp),
1132
idp->di_id, dnp->dn_reg);
1133
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
1134
} else {
1135
uint_t rbit = dnp->dn_left->dn_flags & DT_NF_REF;
1136
1137
assert(dnp->dn_left->dn_flags & DT_NF_WRITABLE);
1138
assert(dnp->dn_left->dn_flags & DT_NF_LVALUE);
1139
1140
dnp->dn_left->dn_flags |= DT_NF_REF; /* force pass-by-ref */
1141
1142
dt_cg_node(dnp->dn_left, dlp, drp);
1143
dt_cg_store(dnp, dlp, drp, dnp->dn_left);
1144
dt_regset_free(drp, dnp->dn_left->dn_reg);
1145
1146
dnp->dn_left->dn_flags &= ~DT_NF_REF;
1147
dnp->dn_left->dn_flags |= rbit;
1148
}
1149
}
1150
1151
static void
1152
dt_cg_assoc_op(dt_node_t *dnp, dt_irlist_t *dlp, dt_regset_t *drp)
1153
{
1154
dif_instr_t instr;
1155
uint_t op;
1156
1157
assert(dnp->dn_kind == DT_NODE_VAR);
1158
assert(!(dnp->dn_ident->di_flags & DT_IDFLG_LOCAL));
1159
assert(dnp->dn_args != NULL);
1160
1161
dt_cg_arglist(dnp->dn_ident, dnp->dn_args, dlp, drp);
1162
1163
dnp->dn_reg = dt_regset_alloc(drp);
1164
1165
if (dnp->dn_ident->di_flags & DT_IDFLG_TLS)
1166
op = DIF_OP_LDTAA;
1167
else
1168
op = DIF_OP_LDGAA;
1169
1170
dnp->dn_ident->di_flags |= DT_IDFLG_DIFR;
1171
instr = DIF_INSTR_LDV(op, dnp->dn_ident->di_id, dnp->dn_reg);
1172
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
1173
1174
/*
1175
* If the associative array is a pass-by-reference type, then we are
1176
* loading its value as a pointer to either load or store through it.
1177
* The array element in question may not have been faulted in yet, in
1178
* which case DIF_OP_LD*AA will return zero. We append an epilogue
1179
* of instructions similar to the following:
1180
*
1181
* ld?aa id, %r1 ! base ld?aa instruction above
1182
* tst %r1 ! start of epilogue
1183
* +--- bne label
1184
* | setx size, %r1
1185
* | allocs %r1, %r1
1186
* | st?aa id, %r1
1187
* | ld?aa id, %r1
1188
* v
1189
* label: < rest of code >
1190
*
1191
* The idea is that we allocs a zero-filled chunk of scratch space and
1192
* do a DIF_OP_ST*AA to fault in and initialize the array element, and
1193
* then reload it to get the faulted-in address of the new variable
1194
* storage. This isn't cheap, but pass-by-ref associative array values
1195
* are (thus far) uncommon and the allocs cost only occurs once. If
1196
* this path becomes important to DTrace users, we can improve things
1197
* by adding a new DIF opcode to fault in associative array elements.
1198
*/
1199
if (dnp->dn_flags & DT_NF_REF) {
1200
uint_t stvop = op == DIF_OP_LDTAA ? DIF_OP_STTAA : DIF_OP_STGAA;
1201
uint_t label = dt_irlist_label(dlp);
1202
1203
instr = DIF_INSTR_TST(dnp->dn_reg);
1204
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
1205
1206
instr = DIF_INSTR_BRANCH(DIF_OP_BNE, label);
1207
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
1208
1209
dt_cg_setx(dlp, dnp->dn_reg, dt_node_type_size(dnp));
1210
instr = DIF_INSTR_ALLOCS(dnp->dn_reg, dnp->dn_reg);
1211
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
1212
1213
dnp->dn_ident->di_flags |= DT_IDFLG_DIFW;
1214
instr = DIF_INSTR_STV(stvop, dnp->dn_ident->di_id, dnp->dn_reg);
1215
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
1216
1217
instr = DIF_INSTR_LDV(op, dnp->dn_ident->di_id, dnp->dn_reg);
1218
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
1219
1220
dt_irlist_append(dlp, dt_cg_node_alloc(label, DIF_INSTR_NOP));
1221
}
1222
}
1223
1224
static void
1225
dt_cg_array_op(dt_node_t *dnp, dt_irlist_t *dlp, dt_regset_t *drp)
1226
{
1227
dt_probe_t *prp = yypcb->pcb_probe;
1228
uintmax_t saved = dnp->dn_args->dn_value;
1229
dt_ident_t *idp = dnp->dn_ident;
1230
1231
dif_instr_t instr;
1232
uint_t op;
1233
size_t size;
1234
int reg, n;
1235
1236
assert(dnp->dn_kind == DT_NODE_VAR);
1237
assert(!(idp->di_flags & DT_IDFLG_LOCAL));
1238
1239
assert(dnp->dn_args->dn_kind == DT_NODE_INT);
1240
assert(dnp->dn_args->dn_list == NULL);
1241
1242
/*
1243
* If this is a reference in the args[] array, temporarily modify the
1244
* array index according to the static argument mapping (if any),
1245
* unless the argument reference is provided by a dynamic translator.
1246
* If we're using a dynamic translator for args[], then just set dn_reg
1247
* to an invalid reg and return: DIF_OP_XLARG will fetch the arg later.
1248
*/
1249
if (idp->di_id == DIF_VAR_ARGS) {
1250
if ((idp->di_kind == DT_IDENT_XLPTR ||
1251
idp->di_kind == DT_IDENT_XLSOU) &&
1252
dt_xlator_dynamic(idp->di_data)) {
1253
dnp->dn_reg = -1;
1254
return;
1255
}
1256
dnp->dn_args->dn_value = prp->pr_mapping[saved];
1257
}
1258
1259
dt_cg_node(dnp->dn_args, dlp, drp);
1260
dnp->dn_args->dn_value = saved;
1261
1262
dnp->dn_reg = dnp->dn_args->dn_reg;
1263
1264
if (idp->di_flags & DT_IDFLG_TLS)
1265
op = DIF_OP_LDTA;
1266
else
1267
op = DIF_OP_LDGA;
1268
1269
idp->di_flags |= DT_IDFLG_DIFR;
1270
1271
instr = DIF_INSTR_LDA(op, idp->di_id,
1272
dnp->dn_args->dn_reg, dnp->dn_reg);
1273
1274
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
1275
1276
/*
1277
* If this is a reference to the args[] array, we need to take the
1278
* additional step of explicitly eliminating any bits larger than the
1279
* type size: the DIF interpreter in the kernel will always give us
1280
* the raw (64-bit) argument value, and any bits larger than the type
1281
* size may be junk. As a practical matter, this arises only on 64-bit
1282
* architectures and only when the argument index is larger than the
1283
* number of arguments passed directly to DTrace: if a 8-, 16- or
1284
* 32-bit argument must be retrieved from the stack, it is possible
1285
* (and it some cases, likely) that the upper bits will be garbage.
1286
*/
1287
if (idp->di_id != DIF_VAR_ARGS || !dt_node_is_scalar(dnp))
1288
return;
1289
1290
if ((size = dt_node_type_size(dnp)) == sizeof (uint64_t))
1291
return;
1292
1293
reg = dt_regset_alloc(drp);
1294
assert(size < sizeof (uint64_t));
1295
n = sizeof (uint64_t) * NBBY - size * NBBY;
1296
1297
dt_cg_setx(dlp, reg, n);
1298
1299
instr = DIF_INSTR_FMT(DIF_OP_SLL, dnp->dn_reg, reg, dnp->dn_reg);
1300
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
1301
1302
instr = DIF_INSTR_FMT((dnp->dn_flags & DT_NF_SIGNED) ?
1303
DIF_OP_SRA : DIF_OP_SRL, dnp->dn_reg, reg, dnp->dn_reg);
1304
1305
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
1306
dt_regset_free(drp, reg);
1307
}
1308
1309
/*
1310
* Generate code for an inlined variable reference. Inlines can be used to
1311
* define either scalar or associative array substitutions. For scalars, we
1312
* simply generate code for the parse tree saved in the identifier's din_root,
1313
* and then cast the resulting expression to the inline's declaration type.
1314
* For arrays, we take the input parameter subtrees from dnp->dn_args and
1315
* temporarily store them in the din_root of each din_argv[i] identifier,
1316
* which are themselves inlines and were set up for us by the parser. The
1317
* result is that any reference to the inlined parameter inside the top-level
1318
* din_root will turn into a recursive call to dt_cg_inline() for a scalar
1319
* inline whose din_root will refer to the subtree pointed to by the argument.
1320
*/
1321
static void
1322
dt_cg_inline(dt_node_t *dnp, dt_irlist_t *dlp, dt_regset_t *drp)
1323
{
1324
dt_ident_t *idp = dnp->dn_ident;
1325
dt_idnode_t *inp = idp->di_iarg;
1326
1327
dt_idnode_t *pinp;
1328
dt_node_t *pnp;
1329
int i;
1330
1331
assert(idp->di_flags & DT_IDFLG_INLINE);
1332
assert(idp->di_ops == &dt_idops_inline);
1333
1334
if (idp->di_kind == DT_IDENT_ARRAY) {
1335
for (i = 0, pnp = dnp->dn_args;
1336
pnp != NULL; pnp = pnp->dn_list, i++) {
1337
if (inp->din_argv[i] != NULL) {
1338
pinp = inp->din_argv[i]->di_iarg;
1339
pinp->din_root = pnp;
1340
}
1341
}
1342
}
1343
1344
dt_cg_node(inp->din_root, dlp, drp);
1345
dnp->dn_reg = inp->din_root->dn_reg;
1346
dt_cg_typecast(inp->din_root, dnp, dlp, drp);
1347
1348
if (idp->di_kind == DT_IDENT_ARRAY) {
1349
for (i = 0; i < inp->din_argc; i++) {
1350
pinp = inp->din_argv[i]->di_iarg;
1351
pinp->din_root = NULL;
1352
}
1353
}
1354
}
1355
1356
typedef struct dt_xlmemb {
1357
dt_ident_t *dtxl_idp; /* translated ident */
1358
dt_irlist_t *dtxl_dlp; /* instruction list */
1359
dt_regset_t *dtxl_drp; /* register set */
1360
int dtxl_sreg; /* location of the translation input */
1361
int dtxl_dreg; /* location of our allocated buffer */
1362
} dt_xlmemb_t;
1363
1364
/*ARGSUSED*/
1365
static int
1366
dt_cg_xlate_member(const char *name, ctf_id_t type, ulong_t off, void *arg)
1367
{
1368
dt_xlmemb_t *dx = arg;
1369
dt_ident_t *idp = dx->dtxl_idp;
1370
dt_irlist_t *dlp = dx->dtxl_dlp;
1371
dt_regset_t *drp = dx->dtxl_drp;
1372
1373
dt_node_t *mnp;
1374
dt_xlator_t *dxp;
1375
1376
int reg, treg;
1377
uint32_t instr;
1378
size_t size;
1379
1380
/* Generate code for the translation. */
1381
dxp = idp->di_data;
1382
mnp = dt_xlator_member(dxp, name);
1383
1384
/* If there's no translator for the given member, skip it. */
1385
if (mnp == NULL)
1386
return (0);
1387
1388
dxp->dx_ident->di_flags |= DT_IDFLG_CGREG;
1389
dxp->dx_ident->di_id = dx->dtxl_sreg;
1390
1391
dt_cg_node(mnp->dn_membexpr, dlp, drp);
1392
1393
dxp->dx_ident->di_flags &= ~DT_IDFLG_CGREG;
1394
dxp->dx_ident->di_id = 0;
1395
1396
treg = mnp->dn_membexpr->dn_reg;
1397
1398
/* Compute the offset into our buffer and store the result there. */
1399
reg = dt_regset_alloc(drp);
1400
1401
dt_cg_setx(dlp, reg, off / NBBY);
1402
instr = DIF_INSTR_FMT(DIF_OP_ADD, dx->dtxl_dreg, reg, reg);
1403
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
1404
1405
size = ctf_type_size(mnp->dn_membexpr->dn_ctfp,
1406
mnp->dn_membexpr->dn_type);
1407
if (dt_node_is_scalar(mnp->dn_membexpr)) {
1408
/*
1409
* Copying scalars is simple.
1410
*/
1411
switch (size) {
1412
case 1:
1413
instr = DIF_INSTR_STORE(DIF_OP_STB, treg, reg);
1414
break;
1415
case 2:
1416
instr = DIF_INSTR_STORE(DIF_OP_STH, treg, reg);
1417
break;
1418
case 4:
1419
instr = DIF_INSTR_STORE(DIF_OP_STW, treg, reg);
1420
break;
1421
case 8:
1422
instr = DIF_INSTR_STORE(DIF_OP_STX, treg, reg);
1423
break;
1424
default:
1425
xyerror(D_UNKNOWN, "internal error -- unexpected "
1426
"size: %lu\n", (ulong_t)size);
1427
}
1428
1429
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
1430
1431
} else if (dt_node_is_string(mnp->dn_membexpr)) {
1432
int szreg;
1433
1434
/*
1435
* Use the copys instruction for strings.
1436
*/
1437
szreg = dt_regset_alloc(drp);
1438
dt_cg_setx(dlp, szreg, size);
1439
instr = DIF_INSTR_COPYS(treg, szreg, reg);
1440
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
1441
dt_regset_free(drp, szreg);
1442
} else {
1443
int szreg;
1444
1445
/*
1446
* If it's anything else then we'll just bcopy it.
1447
*/
1448
szreg = dt_regset_alloc(drp);
1449
dt_cg_setx(dlp, szreg, size);
1450
dt_irlist_append(dlp,
1451
dt_cg_node_alloc(DT_LBL_NONE, DIF_INSTR_FLUSHTS));
1452
instr = DIF_INSTR_PUSHTS(DIF_OP_PUSHTV, DIF_TYPE_CTF,
1453
DIF_REG_R0, treg);
1454
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
1455
instr = DIF_INSTR_PUSHTS(DIF_OP_PUSHTV, DIF_TYPE_CTF,
1456
DIF_REG_R0, reg);
1457
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
1458
instr = DIF_INSTR_PUSHTS(DIF_OP_PUSHTV, DIF_TYPE_CTF,
1459
DIF_REG_R0, szreg);
1460
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
1461
instr = DIF_INSTR_CALL(DIF_SUBR_BCOPY, szreg);
1462
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
1463
dt_regset_free(drp, szreg);
1464
}
1465
1466
dt_regset_free(drp, reg);
1467
dt_regset_free(drp, treg);
1468
1469
return (0);
1470
}
1471
1472
/*
1473
* If we're expanding a translated type, we create an appropriately sized
1474
* buffer with alloca() and then translate each member into it.
1475
*/
1476
static int
1477
dt_cg_xlate_expand(dt_node_t *dnp, dt_ident_t *idp, dt_irlist_t *dlp,
1478
dt_regset_t *drp)
1479
{
1480
dt_xlmemb_t dlm;
1481
uint32_t instr;
1482
int dreg;
1483
size_t size;
1484
1485
dreg = dt_regset_alloc(drp);
1486
size = ctf_type_size(dnp->dn_ident->di_ctfp, dnp->dn_ident->di_type);
1487
1488
/* Call alloca() to create the buffer. */
1489
dt_cg_setx(dlp, dreg, size);
1490
1491
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, DIF_INSTR_FLUSHTS));
1492
1493
instr = DIF_INSTR_PUSHTS(DIF_OP_PUSHTV, DIF_TYPE_CTF, DIF_REG_R0, dreg);
1494
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
1495
1496
instr = DIF_INSTR_CALL(DIF_SUBR_ALLOCA, dreg);
1497
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
1498
1499
/* Generate the translation for each member. */
1500
dlm.dtxl_idp = idp;
1501
dlm.dtxl_dlp = dlp;
1502
dlm.dtxl_drp = drp;
1503
dlm.dtxl_sreg = dnp->dn_reg;
1504
dlm.dtxl_dreg = dreg;
1505
(void) ctf_member_iter(dnp->dn_ident->di_ctfp,
1506
dnp->dn_ident->di_type, dt_cg_xlate_member,
1507
&dlm);
1508
1509
return (dreg);
1510
}
1511
1512
static void
1513
dt_cg_node(dt_node_t *dnp, dt_irlist_t *dlp, dt_regset_t *drp)
1514
{
1515
ctf_file_t *ctfp = dnp->dn_ctfp;
1516
ctf_file_t *octfp;
1517
ctf_membinfo_t m;
1518
ctf_id_t type;
1519
1520
dif_instr_t instr;
1521
dt_ident_t *idp;
1522
ssize_t stroff;
1523
uint_t op;
1524
1525
switch (dnp->dn_op) {
1526
case DT_TOK_COMMA:
1527
dt_cg_node(dnp->dn_left, dlp, drp);
1528
dt_regset_free(drp, dnp->dn_left->dn_reg);
1529
dt_cg_node(dnp->dn_right, dlp, drp);
1530
dnp->dn_reg = dnp->dn_right->dn_reg;
1531
break;
1532
1533
case DT_TOK_ASGN:
1534
dt_cg_node(dnp->dn_right, dlp, drp);
1535
dnp->dn_reg = dnp->dn_right->dn_reg;
1536
dt_cg_asgn_op(dnp, dlp, drp);
1537
break;
1538
1539
case DT_TOK_ADD_EQ:
1540
dt_cg_arithmetic_op(dnp, dlp, drp, DIF_OP_ADD);
1541
dt_cg_asgn_op(dnp, dlp, drp);
1542
break;
1543
1544
case DT_TOK_SUB_EQ:
1545
dt_cg_arithmetic_op(dnp, dlp, drp, DIF_OP_SUB);
1546
dt_cg_asgn_op(dnp, dlp, drp);
1547
break;
1548
1549
case DT_TOK_MUL_EQ:
1550
dt_cg_arithmetic_op(dnp, dlp, drp, DIF_OP_MUL);
1551
dt_cg_asgn_op(dnp, dlp, drp);
1552
break;
1553
1554
case DT_TOK_DIV_EQ:
1555
dt_cg_arithmetic_op(dnp, dlp, drp,
1556
(dnp->dn_flags & DT_NF_SIGNED) ? DIF_OP_SDIV : DIF_OP_UDIV);
1557
dt_cg_asgn_op(dnp, dlp, drp);
1558
break;
1559
1560
case DT_TOK_MOD_EQ:
1561
dt_cg_arithmetic_op(dnp, dlp, drp,
1562
(dnp->dn_flags & DT_NF_SIGNED) ? DIF_OP_SREM : DIF_OP_UREM);
1563
dt_cg_asgn_op(dnp, dlp, drp);
1564
break;
1565
1566
case DT_TOK_AND_EQ:
1567
dt_cg_arithmetic_op(dnp, dlp, drp, DIF_OP_AND);
1568
dt_cg_asgn_op(dnp, dlp, drp);
1569
break;
1570
1571
case DT_TOK_XOR_EQ:
1572
dt_cg_arithmetic_op(dnp, dlp, drp, DIF_OP_XOR);
1573
dt_cg_asgn_op(dnp, dlp, drp);
1574
break;
1575
1576
case DT_TOK_OR_EQ:
1577
dt_cg_arithmetic_op(dnp, dlp, drp, DIF_OP_OR);
1578
dt_cg_asgn_op(dnp, dlp, drp);
1579
break;
1580
1581
case DT_TOK_LSH_EQ:
1582
dt_cg_arithmetic_op(dnp, dlp, drp, DIF_OP_SLL);
1583
dt_cg_asgn_op(dnp, dlp, drp);
1584
break;
1585
1586
case DT_TOK_RSH_EQ:
1587
dt_cg_arithmetic_op(dnp, dlp, drp,
1588
(dnp->dn_flags & DT_NF_SIGNED) ? DIF_OP_SRA : DIF_OP_SRL);
1589
dt_cg_asgn_op(dnp, dlp, drp);
1590
break;
1591
1592
case DT_TOK_QUESTION:
1593
dt_cg_ternary_op(dnp, dlp, drp);
1594
break;
1595
1596
case DT_TOK_LOR:
1597
dt_cg_logical_or(dnp, dlp, drp);
1598
break;
1599
1600
case DT_TOK_LXOR:
1601
dt_cg_logical_xor(dnp, dlp, drp);
1602
break;
1603
1604
case DT_TOK_LAND:
1605
dt_cg_logical_and(dnp, dlp, drp);
1606
break;
1607
1608
case DT_TOK_BOR:
1609
dt_cg_arithmetic_op(dnp, dlp, drp, DIF_OP_OR);
1610
break;
1611
1612
case DT_TOK_XOR:
1613
dt_cg_arithmetic_op(dnp, dlp, drp, DIF_OP_XOR);
1614
break;
1615
1616
case DT_TOK_BAND:
1617
dt_cg_arithmetic_op(dnp, dlp, drp, DIF_OP_AND);
1618
break;
1619
1620
case DT_TOK_EQU:
1621
dt_cg_compare_op(dnp, dlp, drp, DIF_OP_BE);
1622
break;
1623
1624
case DT_TOK_NEQ:
1625
dt_cg_compare_op(dnp, dlp, drp, DIF_OP_BNE);
1626
break;
1627
1628
case DT_TOK_LT:
1629
dt_cg_compare_op(dnp, dlp, drp,
1630
dt_cg_compare_signed(dnp) ? DIF_OP_BL : DIF_OP_BLU);
1631
break;
1632
1633
case DT_TOK_LE:
1634
dt_cg_compare_op(dnp, dlp, drp,
1635
dt_cg_compare_signed(dnp) ? DIF_OP_BLE : DIF_OP_BLEU);
1636
break;
1637
1638
case DT_TOK_GT:
1639
dt_cg_compare_op(dnp, dlp, drp,
1640
dt_cg_compare_signed(dnp) ? DIF_OP_BG : DIF_OP_BGU);
1641
break;
1642
1643
case DT_TOK_GE:
1644
dt_cg_compare_op(dnp, dlp, drp,
1645
dt_cg_compare_signed(dnp) ? DIF_OP_BGE : DIF_OP_BGEU);
1646
break;
1647
1648
case DT_TOK_LSH:
1649
dt_cg_arithmetic_op(dnp, dlp, drp, DIF_OP_SLL);
1650
break;
1651
1652
case DT_TOK_RSH:
1653
dt_cg_arithmetic_op(dnp, dlp, drp,
1654
(dnp->dn_flags & DT_NF_SIGNED) ? DIF_OP_SRA : DIF_OP_SRL);
1655
break;
1656
1657
case DT_TOK_ADD:
1658
dt_cg_arithmetic_op(dnp, dlp, drp, DIF_OP_ADD);
1659
break;
1660
1661
case DT_TOK_SUB:
1662
dt_cg_arithmetic_op(dnp, dlp, drp, DIF_OP_SUB);
1663
break;
1664
1665
case DT_TOK_MUL:
1666
dt_cg_arithmetic_op(dnp, dlp, drp, DIF_OP_MUL);
1667
break;
1668
1669
case DT_TOK_DIV:
1670
dt_cg_arithmetic_op(dnp, dlp, drp,
1671
(dnp->dn_flags & DT_NF_SIGNED) ? DIF_OP_SDIV : DIF_OP_UDIV);
1672
break;
1673
1674
case DT_TOK_MOD:
1675
dt_cg_arithmetic_op(dnp, dlp, drp,
1676
(dnp->dn_flags & DT_NF_SIGNED) ? DIF_OP_SREM : DIF_OP_UREM);
1677
break;
1678
1679
case DT_TOK_LNEG:
1680
dt_cg_logical_neg(dnp, dlp, drp);
1681
break;
1682
1683
case DT_TOK_BNEG:
1684
dt_cg_node(dnp->dn_child, dlp, drp);
1685
dnp->dn_reg = dnp->dn_child->dn_reg;
1686
instr = DIF_INSTR_NOT(dnp->dn_reg, dnp->dn_reg);
1687
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
1688
break;
1689
1690
case DT_TOK_PREINC:
1691
dt_cg_prearith_op(dnp, dlp, drp, DIF_OP_ADD);
1692
break;
1693
1694
case DT_TOK_POSTINC:
1695
dt_cg_postarith_op(dnp, dlp, drp, DIF_OP_ADD);
1696
break;
1697
1698
case DT_TOK_PREDEC:
1699
dt_cg_prearith_op(dnp, dlp, drp, DIF_OP_SUB);
1700
break;
1701
1702
case DT_TOK_POSTDEC:
1703
dt_cg_postarith_op(dnp, dlp, drp, DIF_OP_SUB);
1704
break;
1705
1706
case DT_TOK_IPOS:
1707
dt_cg_node(dnp->dn_child, dlp, drp);
1708
dnp->dn_reg = dnp->dn_child->dn_reg;
1709
break;
1710
1711
case DT_TOK_INEG:
1712
dt_cg_node(dnp->dn_child, dlp, drp);
1713
dnp->dn_reg = dnp->dn_child->dn_reg;
1714
1715
instr = DIF_INSTR_FMT(DIF_OP_SUB, DIF_REG_R0,
1716
dnp->dn_reg, dnp->dn_reg);
1717
1718
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
1719
break;
1720
1721
case DT_TOK_DEREF:
1722
dt_cg_node(dnp->dn_child, dlp, drp);
1723
dnp->dn_reg = dnp->dn_child->dn_reg;
1724
1725
if (dt_node_is_dynamic(dnp->dn_child)) {
1726
int reg;
1727
idp = dt_node_resolve(dnp->dn_child, DT_IDENT_XLPTR);
1728
assert(idp != NULL);
1729
reg = dt_cg_xlate_expand(dnp, idp, dlp, drp);
1730
1731
dt_regset_free(drp, dnp->dn_child->dn_reg);
1732
dnp->dn_reg = reg;
1733
1734
} else if (!(dnp->dn_flags & DT_NF_REF)) {
1735
uint_t ubit = dnp->dn_flags & DT_NF_USERLAND;
1736
1737
/*
1738
* Save and restore DT_NF_USERLAND across dt_cg_load():
1739
* we need the sign bit from dnp and the user bit from
1740
* dnp->dn_child in order to get the proper opcode.
1741
*/
1742
dnp->dn_flags |=
1743
(dnp->dn_child->dn_flags & DT_NF_USERLAND);
1744
1745
instr = DIF_INSTR_LOAD(dt_cg_load(dnp, ctfp,
1746
dnp->dn_type), dnp->dn_reg, dnp->dn_reg);
1747
1748
dnp->dn_flags &= ~DT_NF_USERLAND;
1749
dnp->dn_flags |= ubit;
1750
1751
dt_irlist_append(dlp,
1752
dt_cg_node_alloc(DT_LBL_NONE, instr));
1753
}
1754
break;
1755
1756
case DT_TOK_ADDROF: {
1757
uint_t rbit = dnp->dn_child->dn_flags & DT_NF_REF;
1758
1759
dnp->dn_child->dn_flags |= DT_NF_REF; /* force pass-by-ref */
1760
dt_cg_node(dnp->dn_child, dlp, drp);
1761
dnp->dn_reg = dnp->dn_child->dn_reg;
1762
1763
dnp->dn_child->dn_flags &= ~DT_NF_REF;
1764
dnp->dn_child->dn_flags |= rbit;
1765
break;
1766
}
1767
1768
case DT_TOK_SIZEOF: {
1769
size_t size = dt_node_sizeof(dnp->dn_child);
1770
dnp->dn_reg = dt_regset_alloc(drp);
1771
assert(size != 0);
1772
dt_cg_setx(dlp, dnp->dn_reg, size);
1773
break;
1774
}
1775
1776
case DT_TOK_STRINGOF:
1777
dt_cg_node(dnp->dn_child, dlp, drp);
1778
dnp->dn_reg = dnp->dn_child->dn_reg;
1779
break;
1780
1781
case DT_TOK_XLATE:
1782
/*
1783
* An xlate operator appears in either an XLATOR, indicating a
1784
* reference to a dynamic translator, or an OP2, indicating
1785
* use of the xlate operator in the user's program. For the
1786
* dynamic case, generate an xlate opcode with a reference to
1787
* the corresponding member, pre-computed for us in dn_members.
1788
*/
1789
if (dnp->dn_kind == DT_NODE_XLATOR) {
1790
dt_xlator_t *dxp = dnp->dn_xlator;
1791
1792
assert(dxp->dx_ident->di_flags & DT_IDFLG_CGREG);
1793
assert(dxp->dx_ident->di_id != 0);
1794
1795
dnp->dn_reg = dt_regset_alloc(drp);
1796
1797
if (dxp->dx_arg == -1) {
1798
instr = DIF_INSTR_MOV(
1799
dxp->dx_ident->di_id, dnp->dn_reg);
1800
dt_irlist_append(dlp,
1801
dt_cg_node_alloc(DT_LBL_NONE, instr));
1802
op = DIF_OP_XLATE;
1803
} else
1804
op = DIF_OP_XLARG;
1805
1806
instr = DIF_INSTR_XLATE(op, 0, dnp->dn_reg);
1807
dt_irlist_append(dlp,
1808
dt_cg_node_alloc(DT_LBL_NONE, instr));
1809
1810
dlp->dl_last->di_extern = dnp->dn_xmember;
1811
break;
1812
}
1813
1814
assert(dnp->dn_kind == DT_NODE_OP2);
1815
dt_cg_node(dnp->dn_right, dlp, drp);
1816
dnp->dn_reg = dnp->dn_right->dn_reg;
1817
break;
1818
1819
case DT_TOK_LPAR:
1820
dt_cg_node(dnp->dn_right, dlp, drp);
1821
dnp->dn_reg = dnp->dn_right->dn_reg;
1822
dt_cg_typecast(dnp->dn_right, dnp, dlp, drp);
1823
break;
1824
1825
case DT_TOK_PTR:
1826
case DT_TOK_DOT:
1827
assert(dnp->dn_right->dn_kind == DT_NODE_IDENT);
1828
dt_cg_node(dnp->dn_left, dlp, drp);
1829
1830
/*
1831
* If the left-hand side of PTR or DOT is a dynamic variable,
1832
* we expect it to be the output of a D translator. In this
1833
* case, we look up the parse tree corresponding to the member
1834
* that is being accessed and run the code generator over it.
1835
* We then cast the result as if by the assignment operator.
1836
*/
1837
if ((idp = dt_node_resolve(
1838
dnp->dn_left, DT_IDENT_XLSOU)) != NULL ||
1839
(idp = dt_node_resolve(
1840
dnp->dn_left, DT_IDENT_XLPTR)) != NULL) {
1841
1842
dt_xlator_t *dxp;
1843
dt_node_t *mnp;
1844
1845
dxp = idp->di_data;
1846
mnp = dt_xlator_member(dxp, dnp->dn_right->dn_string);
1847
assert(mnp != NULL);
1848
1849
dxp->dx_ident->di_flags |= DT_IDFLG_CGREG;
1850
dxp->dx_ident->di_id = dnp->dn_left->dn_reg;
1851
1852
dt_cg_node(mnp->dn_membexpr, dlp, drp);
1853
dnp->dn_reg = mnp->dn_membexpr->dn_reg;
1854
dt_cg_typecast(mnp->dn_membexpr, dnp, dlp, drp);
1855
1856
dxp->dx_ident->di_flags &= ~DT_IDFLG_CGREG;
1857
dxp->dx_ident->di_id = 0;
1858
1859
if (dnp->dn_left->dn_reg != -1)
1860
dt_regset_free(drp, dnp->dn_left->dn_reg);
1861
break;
1862
}
1863
1864
ctfp = dnp->dn_left->dn_ctfp;
1865
type = ctf_type_resolve(ctfp, dnp->dn_left->dn_type);
1866
1867
if (dnp->dn_op == DT_TOK_PTR) {
1868
type = ctf_type_reference(ctfp, type);
1869
type = ctf_type_resolve(ctfp, type);
1870
}
1871
1872
if ((ctfp = dt_cg_membinfo(octfp = ctfp, type,
1873
dnp->dn_right->dn_string, &m)) == NULL) {
1874
yypcb->pcb_hdl->dt_ctferr = ctf_errno(octfp);
1875
longjmp(yypcb->pcb_jmpbuf, EDT_CTF);
1876
}
1877
1878
if (m.ctm_offset != 0) {
1879
int reg;
1880
1881
reg = dt_regset_alloc(drp);
1882
1883
/*
1884
* If the offset is not aligned on a byte boundary, it
1885
* is a bit-field member and we will extract the value
1886
* bits below after we generate the appropriate load.
1887
*/
1888
dt_cg_setx(dlp, reg, m.ctm_offset / NBBY);
1889
1890
instr = DIF_INSTR_FMT(DIF_OP_ADD,
1891
dnp->dn_left->dn_reg, reg, dnp->dn_left->dn_reg);
1892
1893
dt_irlist_append(dlp,
1894
dt_cg_node_alloc(DT_LBL_NONE, instr));
1895
dt_regset_free(drp, reg);
1896
}
1897
1898
if (!(dnp->dn_flags & DT_NF_REF)) {
1899
uint_t ubit = dnp->dn_flags & DT_NF_USERLAND;
1900
1901
/*
1902
* Save and restore DT_NF_USERLAND across dt_cg_load():
1903
* we need the sign bit from dnp and the user bit from
1904
* dnp->dn_left in order to get the proper opcode.
1905
*/
1906
dnp->dn_flags |=
1907
(dnp->dn_left->dn_flags & DT_NF_USERLAND);
1908
1909
instr = DIF_INSTR_LOAD(dt_cg_load(dnp,
1910
ctfp, m.ctm_type), dnp->dn_left->dn_reg,
1911
dnp->dn_left->dn_reg);
1912
1913
dnp->dn_flags &= ~DT_NF_USERLAND;
1914
dnp->dn_flags |= ubit;
1915
1916
dt_irlist_append(dlp,
1917
dt_cg_node_alloc(DT_LBL_NONE, instr));
1918
1919
if (dnp->dn_flags & DT_NF_BITFIELD)
1920
dt_cg_field_get(dnp, dlp, drp, ctfp, &m);
1921
}
1922
1923
dnp->dn_reg = dnp->dn_left->dn_reg;
1924
break;
1925
1926
case DT_TOK_STRING:
1927
dnp->dn_reg = dt_regset_alloc(drp);
1928
1929
assert(dnp->dn_kind == DT_NODE_STRING);
1930
stroff = dt_strtab_insert(yypcb->pcb_strtab, dnp->dn_string);
1931
1932
if (stroff == -1L)
1933
longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM);
1934
if (stroff > DIF_STROFF_MAX)
1935
longjmp(yypcb->pcb_jmpbuf, EDT_STR2BIG);
1936
1937
instr = DIF_INSTR_SETS((ulong_t)stroff, dnp->dn_reg);
1938
dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
1939
break;
1940
1941
case DT_TOK_IDENT:
1942
/*
1943
* If the specified identifier is a variable on which we have
1944
* set the code generator register flag, then this variable
1945
* has already had code generated for it and saved in di_id.
1946
* Allocate a new register and copy the existing value to it.
1947
*/
1948
if (dnp->dn_kind == DT_NODE_VAR &&
1949
(dnp->dn_ident->di_flags & DT_IDFLG_CGREG)) {
1950
dnp->dn_reg = dt_regset_alloc(drp);
1951
instr = DIF_INSTR_MOV(dnp->dn_ident->di_id,
1952
dnp->dn_reg);
1953
dt_irlist_append(dlp,
1954
dt_cg_node_alloc(DT_LBL_NONE, instr));
1955
break;
1956
}
1957
1958
/*
1959
* Identifiers can represent function calls, variable refs, or
1960
* symbols. First we check for inlined variables, and handle
1961
* them by generating code for the inline parse tree.
1962
*/
1963
if (dnp->dn_kind == DT_NODE_VAR &&
1964
(dnp->dn_ident->di_flags & DT_IDFLG_INLINE)) {
1965
dt_cg_inline(dnp, dlp, drp);
1966
break;
1967
}
1968
1969
switch (dnp->dn_kind) {
1970
case DT_NODE_FUNC: {
1971
if ((idp = dnp->dn_ident)->di_kind != DT_IDENT_FUNC) {
1972
dnerror(dnp, D_CG_EXPR, "%s %s( ) may not be "
1973
"called from a D expression (D program "
1974
"context required)\n",
1975
dt_idkind_name(idp->di_kind), idp->di_name);
1976
}
1977
1978
dt_cg_arglist(dnp->dn_ident, dnp->dn_args, dlp, drp);
1979
1980
dnp->dn_reg = dt_regset_alloc(drp);
1981
instr = DIF_INSTR_CALL(dnp->dn_ident->di_id,
1982
dnp->dn_reg);
1983
1984
dt_irlist_append(dlp,
1985
dt_cg_node_alloc(DT_LBL_NONE, instr));
1986
1987
break;
1988
}
1989
1990
case DT_NODE_VAR:
1991
if (dnp->dn_ident->di_kind == DT_IDENT_XLSOU ||
1992
dnp->dn_ident->di_kind == DT_IDENT_XLPTR) {
1993
/*
1994
* This can only happen if we have translated
1995
* args[]. See dt_idcook_args() for details.
1996
*/
1997
assert(dnp->dn_ident->di_id == DIF_VAR_ARGS);
1998
dt_cg_array_op(dnp, dlp, drp);
1999
break;
2000
}
2001
2002
if (dnp->dn_ident->di_kind == DT_IDENT_ARRAY) {
2003
if (dnp->dn_ident->di_id > DIF_VAR_ARRAY_MAX)
2004
dt_cg_assoc_op(dnp, dlp, drp);
2005
else
2006
dt_cg_array_op(dnp, dlp, drp);
2007
break;
2008
}
2009
2010
dnp->dn_reg = dt_regset_alloc(drp);
2011
2012
if (dnp->dn_ident->di_flags & DT_IDFLG_LOCAL)
2013
op = DIF_OP_LDLS;
2014
else if (dnp->dn_ident->di_flags & DT_IDFLG_TLS)
2015
op = DIF_OP_LDTS;
2016
else
2017
op = DIF_OP_LDGS;
2018
2019
dnp->dn_ident->di_flags |= DT_IDFLG_DIFR;
2020
2021
instr = DIF_INSTR_LDV(op,
2022
dnp->dn_ident->di_id, dnp->dn_reg);
2023
2024
dt_irlist_append(dlp,
2025
dt_cg_node_alloc(DT_LBL_NONE, instr));
2026
break;
2027
2028
case DT_NODE_SYM: {
2029
dtrace_hdl_t *dtp = yypcb->pcb_hdl;
2030
dtrace_syminfo_t *sip = dnp->dn_ident->di_data;
2031
GElf_Sym sym;
2032
2033
if (dtrace_lookup_by_name(dtp,
2034
sip->dts_object, sip->dts_name, &sym, NULL) == -1) {
2035
xyerror(D_UNKNOWN, "cg failed for symbol %s`%s:"
2036
" %s\n", sip->dts_object, sip->dts_name,
2037
dtrace_errmsg(dtp, dtrace_errno(dtp)));
2038
}
2039
2040
dnp->dn_reg = dt_regset_alloc(drp);
2041
dt_cg_xsetx(dlp, dnp->dn_ident,
2042
DT_LBL_NONE, dnp->dn_reg, sym.st_value);
2043
2044
if (!(dnp->dn_flags & DT_NF_REF)) {
2045
instr = DIF_INSTR_LOAD(dt_cg_load(dnp, ctfp,
2046
dnp->dn_type), dnp->dn_reg, dnp->dn_reg);
2047
dt_irlist_append(dlp,
2048
dt_cg_node_alloc(DT_LBL_NONE, instr));
2049
}
2050
break;
2051
}
2052
2053
default:
2054
xyerror(D_UNKNOWN, "internal error -- node type %u is "
2055
"not valid for an identifier\n", dnp->dn_kind);
2056
}
2057
break;
2058
2059
case DT_TOK_INT:
2060
dnp->dn_reg = dt_regset_alloc(drp);
2061
dt_cg_setx(dlp, dnp->dn_reg, dnp->dn_value);
2062
break;
2063
2064
default:
2065
xyerror(D_UNKNOWN, "internal error -- token type %u is not a "
2066
"valid D compilation token\n", dnp->dn_op);
2067
}
2068
}
2069
2070
void
2071
dt_cg(dt_pcb_t *pcb, dt_node_t *dnp)
2072
{
2073
dif_instr_t instr;
2074
dt_xlator_t *dxp;
2075
dt_ident_t *idp;
2076
2077
if (pcb->pcb_regs == NULL && (pcb->pcb_regs =
2078
dt_regset_create(pcb->pcb_hdl->dt_conf.dtc_difintregs)) == NULL)
2079
longjmp(pcb->pcb_jmpbuf, EDT_NOMEM);
2080
2081
dt_regset_reset(pcb->pcb_regs);
2082
(void) dt_regset_alloc(pcb->pcb_regs); /* allocate %r0 */
2083
2084
if (pcb->pcb_inttab != NULL)
2085
dt_inttab_destroy(pcb->pcb_inttab);
2086
2087
if ((pcb->pcb_inttab = dt_inttab_create(yypcb->pcb_hdl)) == NULL)
2088
longjmp(pcb->pcb_jmpbuf, EDT_NOMEM);
2089
2090
if (pcb->pcb_strtab != NULL)
2091
dt_strtab_destroy(pcb->pcb_strtab);
2092
2093
if ((pcb->pcb_strtab = dt_strtab_create(BUFSIZ)) == NULL)
2094
longjmp(pcb->pcb_jmpbuf, EDT_NOMEM);
2095
2096
dt_irlist_destroy(&pcb->pcb_ir);
2097
dt_irlist_create(&pcb->pcb_ir);
2098
2099
assert(pcb->pcb_dret == NULL);
2100
pcb->pcb_dret = dnp;
2101
2102
if (dt_node_resolve(dnp, DT_IDENT_XLPTR) != NULL) {
2103
dnerror(dnp, D_CG_DYN, "expression cannot evaluate to result "
2104
"of a translated pointer\n");
2105
}
2106
2107
/*
2108
* If we're generating code for a translator body, assign the input
2109
* parameter to the first available register (i.e. caller passes %r1).
2110
*/
2111
if (dnp->dn_kind == DT_NODE_MEMBER) {
2112
dxp = dnp->dn_membxlator;
2113
dnp = dnp->dn_membexpr;
2114
2115
dxp->dx_ident->di_flags |= DT_IDFLG_CGREG;
2116
dxp->dx_ident->di_id = dt_regset_alloc(pcb->pcb_regs);
2117
}
2118
2119
dt_cg_node(dnp, &pcb->pcb_ir, pcb->pcb_regs);
2120
2121
if ((idp = dt_node_resolve(dnp, DT_IDENT_XLSOU)) != NULL) {
2122
int reg = dt_cg_xlate_expand(dnp, idp,
2123
&pcb->pcb_ir, pcb->pcb_regs);
2124
dt_regset_free(pcb->pcb_regs, dnp->dn_reg);
2125
dnp->dn_reg = reg;
2126
}
2127
2128
instr = DIF_INSTR_RET(dnp->dn_reg);
2129
dt_regset_free(pcb->pcb_regs, dnp->dn_reg);
2130
dt_irlist_append(&pcb->pcb_ir, dt_cg_node_alloc(DT_LBL_NONE, instr));
2131
2132
if (dnp->dn_kind == DT_NODE_MEMBER) {
2133
dt_regset_free(pcb->pcb_regs, dxp->dx_ident->di_id);
2134
dxp->dx_ident->di_id = 0;
2135
dxp->dx_ident->di_flags &= ~DT_IDFLG_CGREG;
2136
}
2137
2138
dt_regset_free(pcb->pcb_regs, 0);
2139
dt_regset_assert_free(pcb->pcb_regs);
2140
}
2141
2142