Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/cddl/contrib/opensolaris/lib/libdtrace/common/dt_proc.c
39562 views
1
/*
2
* CDDL HEADER START
3
*
4
* The contents of this file are subject to the terms of the
5
* Common Development and Distribution License (the "License").
6
* You may not use this file except in compliance with the License.
7
*
8
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9
* or http://www.opensolaris.org/os/licensing.
10
* See the License for the specific language governing permissions
11
* and limitations under the License.
12
*
13
* When distributing Covered Code, include this CDDL HEADER in each
14
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15
* If applicable, add the following below this CDDL HEADER, with the
16
* fields enclosed by brackets "[]" replaced with your own identifying
17
* information: Portions Copyright [yyyy] [name of copyright owner]
18
*
19
* CDDL HEADER END
20
*/
21
22
/*
23
* Copyright 2010 Sun Microsystems, Inc. All rights reserved.
24
* Use is subject to license terms.
25
*/
26
27
/*
28
* Copyright (c) 2012 by Delphix. All rights reserved.
29
*/
30
31
/*
32
* DTrace Process Control
33
*
34
* This file provides a set of routines that permit libdtrace and its clients
35
* to create and grab process handles using libproc, and to share these handles
36
* between library mechanisms that need libproc access, such as ustack(), and
37
* client mechanisms that need libproc access, such as dtrace(1M) -c and -p.
38
* The library provides several mechanisms in the libproc control layer:
39
*
40
* Reference Counting: The library code and client code can independently grab
41
* the same process handles without interfering with one another. Only when
42
* the reference count drops to zero and the handle is not being cached (see
43
* below for more information on caching) will Prelease() be called on it.
44
*
45
* Handle Caching: If a handle is grabbed PGRAB_RDONLY (e.g. by ustack()) and
46
* the reference count drops to zero, the handle is not immediately released.
47
* Instead, libproc handles are maintained on dph_lrulist in order from most-
48
* recently accessed to least-recently accessed. Idle handles are maintained
49
* until a pre-defined LRU cache limit is exceeded, permitting repeated calls
50
* to ustack() to avoid the overhead of releasing and re-grabbing processes.
51
*
52
* Process Control: For processes that are grabbed for control (~PGRAB_RDONLY)
53
* or created by dt_proc_create(), a control thread is created to provide
54
* callbacks on process exit and symbol table caching on dlopen()s.
55
*
56
* MT-Safety: Libproc is not MT-Safe, so dt_proc_lock() and dt_proc_unlock()
57
* are provided to synchronize access to the libproc handle between libdtrace
58
* code and client code and the control thread's use of the ps_prochandle.
59
*
60
* NOTE: MT-Safety is NOT provided for libdtrace itself, or for use of the
61
* dtrace_proc_grab/dtrace_proc_create mechanisms. Like all exported libdtrace
62
* calls, these are assumed to be MT-Unsafe. MT-Safety is ONLY provided for
63
* synchronization between libdtrace control threads and the client thread.
64
*
65
* The ps_prochandles themselves are maintained along with a dt_proc_t struct
66
* in a hash table indexed by PID. This provides basic locking and reference
67
* counting. The dt_proc_t is also maintained in LRU order on dph_lrulist.
68
* The dph_lrucnt and dph_lrulim count the number of cacheable processes and
69
* the current limit on the number of actively cached entries.
70
*
71
* The control thread for a process establishes breakpoints at the rtld_db
72
* locations of interest, updates mappings and symbol tables at these points,
73
* and handles exec and fork (by always following the parent). The control
74
* thread automatically exits when the process dies or control is lost.
75
*
76
* A simple notification mechanism is provided for libdtrace clients using
77
* dtrace_handle_proc() for notification of PS_UNDEAD or PS_LOST events. If
78
* such an event occurs, the dt_proc_t itself is enqueued on a notification
79
* list and the control thread broadcasts to dph_cv. dtrace_sleep() will wake
80
* up using this condition and will then call the client handler as necessary.
81
*/
82
83
#include <sys/syscall.h>
84
#include <sys/wait.h>
85
#include <strings.h>
86
#include <signal.h>
87
#include <assert.h>
88
#include <errno.h>
89
90
#include <dt_proc.h>
91
#include <dt_pid.h>
92
#include <dt_impl.h>
93
94
#include <libproc_compat.h>
95
96
#define IS_SYS_EXEC(w) (w == SYS_execve)
97
#define IS_SYS_FORK(w) (w == SYS_vfork || w == SYS_fork)
98
99
static dt_bkpt_t *
100
dt_proc_bpcreate(dt_proc_t *dpr, uintptr_t addr, dt_bkpt_f *func, void *data)
101
{
102
struct ps_prochandle *P = dpr->dpr_proc;
103
dt_bkpt_t *dbp;
104
105
assert(DT_MUTEX_HELD(&dpr->dpr_lock));
106
107
if ((dbp = dt_zalloc(dpr->dpr_hdl, sizeof (dt_bkpt_t))) != NULL) {
108
dbp->dbp_func = func;
109
dbp->dbp_data = data;
110
dbp->dbp_addr = addr;
111
112
if (Psetbkpt(P, dbp->dbp_addr, &dbp->dbp_instr) == 0)
113
dbp->dbp_active = B_TRUE;
114
115
dt_list_append(&dpr->dpr_bps, dbp);
116
}
117
118
return (dbp);
119
}
120
121
static void
122
dt_proc_bpdestroy(dt_proc_t *dpr, int delbkpts)
123
{
124
int state = Pstate(dpr->dpr_proc);
125
dt_bkpt_t *dbp, *nbp;
126
127
assert(DT_MUTEX_HELD(&dpr->dpr_lock));
128
129
for (dbp = dt_list_next(&dpr->dpr_bps); dbp != NULL; dbp = nbp) {
130
if (delbkpts && dbp->dbp_active &&
131
state != PS_LOST && state != PS_UNDEAD) {
132
(void) Pdelbkpt(dpr->dpr_proc,
133
dbp->dbp_addr, dbp->dbp_instr);
134
}
135
nbp = dt_list_next(dbp);
136
dt_list_delete(&dpr->dpr_bps, dbp);
137
dt_free(dpr->dpr_hdl, dbp);
138
}
139
}
140
141
static void
142
dt_proc_bpmatch(dtrace_hdl_t *dtp, dt_proc_t *dpr)
143
{
144
unsigned long pc;
145
dt_bkpt_t *dbp;
146
147
assert(DT_MUTEX_HELD(&dpr->dpr_lock));
148
149
proc_regget(dpr->dpr_proc, REG_PC, &pc);
150
proc_bkptregadj(&pc);
151
152
for (dbp = dt_list_next(&dpr->dpr_bps);
153
dbp != NULL; dbp = dt_list_next(dbp)) {
154
if (pc == dbp->dbp_addr)
155
break;
156
}
157
158
if (dbp == NULL) {
159
dt_dprintf("pid %d: spurious breakpoint wakeup for %lx\n",
160
(int)dpr->dpr_pid, pc);
161
return;
162
}
163
164
dt_dprintf("pid %d: hit breakpoint at %lx (%lu)\n",
165
(int)dpr->dpr_pid, (ulong_t)dbp->dbp_addr, ++dbp->dbp_hits);
166
167
dbp->dbp_func(dtp, dpr, dbp->dbp_data);
168
(void) Pxecbkpt(dpr->dpr_proc, dbp->dbp_instr);
169
}
170
171
static void
172
dt_proc_bpenable(dt_proc_t *dpr)
173
{
174
dt_bkpt_t *dbp;
175
176
assert(DT_MUTEX_HELD(&dpr->dpr_lock));
177
178
for (dbp = dt_list_next(&dpr->dpr_bps);
179
dbp != NULL; dbp = dt_list_next(dbp)) {
180
if (!dbp->dbp_active && Psetbkpt(dpr->dpr_proc,
181
dbp->dbp_addr, &dbp->dbp_instr) == 0)
182
dbp->dbp_active = B_TRUE;
183
}
184
185
dt_dprintf("breakpoints enabled\n");
186
}
187
188
static void
189
dt_proc_bpdisable(dt_proc_t *dpr)
190
{
191
dt_bkpt_t *dbp;
192
193
assert(DT_MUTEX_HELD(&dpr->dpr_lock));
194
195
for (dbp = dt_list_next(&dpr->dpr_bps);
196
dbp != NULL; dbp = dt_list_next(dbp)) {
197
if (dbp->dbp_active && Pdelbkpt(dpr->dpr_proc,
198
dbp->dbp_addr, dbp->dbp_instr) == 0)
199
dbp->dbp_active = B_FALSE;
200
}
201
202
dt_dprintf("breakpoints disabled\n");
203
}
204
205
static void
206
dt_proc_notify(dtrace_hdl_t *dtp, dt_proc_hash_t *dph, dt_proc_t *dpr,
207
const char *msg)
208
{
209
dt_proc_notify_t *dprn = dt_alloc(dtp, sizeof (dt_proc_notify_t));
210
211
if (dprn == NULL) {
212
dt_dprintf("failed to allocate notification for %d %s\n",
213
(int)dpr->dpr_pid, msg);
214
} else {
215
dprn->dprn_dpr = dpr;
216
if (msg == NULL)
217
dprn->dprn_errmsg[0] = '\0';
218
else
219
(void) strlcpy(dprn->dprn_errmsg, msg,
220
sizeof (dprn->dprn_errmsg));
221
222
(void) pthread_mutex_lock(&dph->dph_lock);
223
224
dprn->dprn_next = dph->dph_notify;
225
dph->dph_notify = dprn;
226
227
(void) pthread_cond_broadcast(&dph->dph_cv);
228
(void) pthread_mutex_unlock(&dph->dph_lock);
229
}
230
}
231
232
/*
233
* Check to see if the control thread was requested to stop when the victim
234
* process reached a particular event (why) rather than continuing the victim.
235
* If 'why' is set in the stop mask, we wait on dpr_cv for dt_proc_continue().
236
* If 'why' is not set, this function returns immediately and does nothing.
237
*/
238
static void
239
dt_proc_stop(dt_proc_t *dpr, uint8_t why)
240
{
241
assert(DT_MUTEX_HELD(&dpr->dpr_lock));
242
assert(why != DT_PROC_STOP_IDLE);
243
244
if (dpr->dpr_stop & why) {
245
dpr->dpr_stop |= DT_PROC_STOP_IDLE;
246
dpr->dpr_stop &= ~why;
247
248
(void) pthread_cond_broadcast(&dpr->dpr_cv);
249
250
/*
251
* We disable breakpoints while stopped to preserve the
252
* integrity of the program text for both our own disassembly
253
* and that of the kernel.
254
*/
255
dt_proc_bpdisable(dpr);
256
257
while (dpr->dpr_stop & DT_PROC_STOP_IDLE)
258
(void) pthread_cond_wait(&dpr->dpr_cv, &dpr->dpr_lock);
259
260
dt_proc_bpenable(dpr);
261
}
262
}
263
264
/*ARGSUSED*/
265
static void
266
dt_proc_bpmain(dtrace_hdl_t *dtp, dt_proc_t *dpr, const char *fname)
267
{
268
dt_dprintf("pid %d: breakpoint at %s()\n", (int)dpr->dpr_pid, fname);
269
dt_proc_stop(dpr, DT_PROC_STOP_MAIN);
270
}
271
272
static void
273
dt_proc_rdevent(dtrace_hdl_t *dtp, dt_proc_t *dpr, const char *evname)
274
{
275
rd_event_msg_t rdm;
276
rd_err_e err;
277
278
if ((err = rd_event_getmsg(dpr->dpr_rtld, &rdm)) != RD_OK) {
279
dt_dprintf("pid %d: failed to get %s event message: %s\n",
280
(int)dpr->dpr_pid, evname, rd_errstr(err));
281
return;
282
}
283
284
dt_dprintf("pid %d: rtld event %s type=%d state %d\n",
285
(int)dpr->dpr_pid, evname, rdm.type, rdm.u.state);
286
287
switch (rdm.type) {
288
case RD_DLACTIVITY:
289
if (rdm.u.state != RD_CONSISTENT)
290
break;
291
292
Pupdate_syms(dpr->dpr_proc);
293
if (dt_pid_create_probes_module(dtp, dpr) != 0)
294
dt_proc_notify(dtp, dtp->dt_procs, dpr,
295
dpr->dpr_errmsg);
296
297
break;
298
case RD_PREINIT:
299
Pupdate_syms(dpr->dpr_proc);
300
dt_proc_stop(dpr, DT_PROC_STOP_PREINIT);
301
break;
302
case RD_POSTINIT:
303
Pupdate_syms(dpr->dpr_proc);
304
dt_proc_stop(dpr, DT_PROC_STOP_POSTINIT);
305
break;
306
}
307
}
308
309
static void
310
dt_proc_rdwatch(dt_proc_t *dpr, rd_event_e event, const char *evname)
311
{
312
rd_notify_t rdn;
313
rd_err_e err;
314
315
if ((err = rd_event_addr(dpr->dpr_rtld, event, &rdn)) != RD_OK) {
316
dt_dprintf("pid %d: failed to get event address for %s: %s\n",
317
(int)dpr->dpr_pid, evname, rd_errstr(err));
318
return;
319
}
320
321
if (rdn.type != RD_NOTIFY_BPT) {
322
dt_dprintf("pid %d: event %s has unexpected type %d\n",
323
(int)dpr->dpr_pid, evname, rdn.type);
324
return;
325
}
326
327
(void) dt_proc_bpcreate(dpr, rdn.u.bptaddr,
328
/* XXX ugly */
329
(dt_bkpt_f *)dt_proc_rdevent, __DECONST(void *, evname));
330
}
331
332
/*
333
* Common code for enabling events associated with the run-time linker after
334
* attaching to a process or after a victim process completes an exec(2).
335
*/
336
static void
337
dt_proc_attach(dt_proc_t *dpr, int exec)
338
{
339
rd_err_e err;
340
GElf_Sym sym;
341
342
assert(DT_MUTEX_HELD(&dpr->dpr_lock));
343
344
if (exec) {
345
346
dt_proc_bpdestroy(dpr, B_FALSE);
347
}
348
if ((dpr->dpr_rtld = Prd_agent(dpr->dpr_proc)) != NULL &&
349
(err = rd_event_enable(dpr->dpr_rtld, B_TRUE)) == RD_OK) {
350
dt_proc_rdwatch(dpr, RD_POSTINIT, "RD_POSTINIT");
351
} else {
352
dt_dprintf("pid %d: failed to enable rtld events: %s\n",
353
(int)dpr->dpr_pid, dpr->dpr_rtld ? rd_errstr(err) :
354
"rtld_db agent initialization failed");
355
}
356
357
Pupdate_maps(dpr->dpr_proc);
358
359
if (Pxlookup_by_name(dpr->dpr_proc, LM_ID_BASE,
360
"a.out", "main", &sym, NULL) == 0) {
361
(void) dt_proc_bpcreate(dpr, (uintptr_t)sym.st_value,
362
(dt_bkpt_f *)dt_proc_bpmain, "a.out`main");
363
} else {
364
dt_dprintf("pid %d: failed to find a.out`main: %s\n",
365
(int)dpr->dpr_pid, strerror(errno));
366
}
367
}
368
369
typedef struct dt_proc_control_data {
370
dtrace_hdl_t *dpcd_hdl; /* DTrace handle */
371
dt_proc_t *dpcd_proc; /* proccess to control */
372
} dt_proc_control_data_t;
373
374
/*
375
* Main loop for all victim process control threads. We initialize all the
376
* appropriate /proc control mechanisms, and then enter a loop waiting for
377
* the process to stop on an event or die. We process any events by calling
378
* appropriate subroutines, and exit when the victim dies or we lose control.
379
*
380
* The control thread synchronizes the use of dpr_proc with other libdtrace
381
* threads using dpr_lock. We hold the lock for all of our operations except
382
* waiting while the process is running: this is accomplished by writing a
383
* PCWSTOP directive directly to the underlying /proc/<pid>/ctl file. If the
384
* libdtrace client wishes to exit or abort our wait, SIGCANCEL can be used.
385
*/
386
static void *
387
dt_proc_control(void *arg)
388
{
389
dt_proc_control_data_t *datap = arg;
390
dtrace_hdl_t *dtp = datap->dpcd_hdl;
391
dt_proc_t *dpr = datap->dpcd_proc;
392
dt_proc_hash_t *dph = dtp->dt_procs;
393
struct ps_prochandle *P = dpr->dpr_proc;
394
int pid = dpr->dpr_pid;
395
int notify = B_FALSE;
396
397
/*
398
* We disable the POSIX thread cancellation mechanism so that the
399
* client program using libdtrace can't accidentally cancel our thread.
400
* dt_proc_destroy() uses SIGCANCEL explicitly to simply poke us out
401
* of PCWSTOP with EINTR, at which point we will see dpr_quit and exit.
402
*/
403
(void) pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, NULL);
404
405
/*
406
* Set up the corresponding process for tracing by libdtrace. We want
407
* to be able to catch breakpoints and efficiently single-step over
408
* them, and we need to enable librtld_db to watch libdl activity.
409
*/
410
(void) pthread_mutex_lock(&dpr->dpr_lock);
411
412
dt_proc_attach(dpr, B_FALSE); /* enable rtld breakpoints */
413
414
/*
415
* If DT_CLOSE_KILL is set, we created the process; otherwise we
416
* grabbed it. Check for an appropriate stop request and wait for
417
* dt_proc_continue.
418
*/
419
if (dpr->dpr_close == DT_CLOSE_KILL)
420
dt_proc_stop(dpr, DT_PROC_STOP_CREATE);
421
else
422
dt_proc_stop(dpr, DT_PROC_STOP_GRAB);
423
424
if (Psetrun(P, 0, 0) == -1) {
425
dt_dprintf("pid %d: failed to set running: %s\n",
426
(int)dpr->dpr_pid, strerror(errno));
427
}
428
429
(void) pthread_mutex_unlock(&dpr->dpr_lock);
430
431
/*
432
* Wait for the process corresponding to this control thread to stop,
433
* process the event, and then set it running again. We want to sleep
434
* with dpr_lock *unheld* so that other parts of libdtrace can use the
435
* ps_prochandle in the meantime (e.g. ustack()). To do this, we write
436
* a PCWSTOP directive directly to the underlying /proc/<pid>/ctl file.
437
* Once the process stops, we wake up, grab dpr_lock, and then call
438
* Pwait() (which will return immediately) and do our processing.
439
*/
440
while (!dpr->dpr_quit) {
441
const lwpstatus_t *psp;
442
443
/* Wait for the process to report status. */
444
proc_wstatus(P);
445
if (errno == EINTR)
446
continue; /* check dpr_quit and continue waiting */
447
448
(void) pthread_mutex_lock(&dpr->dpr_lock);
449
450
switch (Pstate(P)) {
451
case PS_STOP:
452
psp = proc_getlwpstatus(P);
453
454
dt_dprintf("pid %d: proc stopped showing %d/%d\n",
455
pid, psp->pr_why, psp->pr_what);
456
457
/*
458
* If the process stops showing one of the events that
459
* we are tracing, perform the appropriate response.
460
* Note that we ignore PR_SUSPENDED, PR_CHECKPOINT, and
461
* PR_JOBCONTROL by design: if one of these conditions
462
* occurs, we will fall through to Psetrun() but the
463
* process will remain stopped in the kernel by the
464
* corresponding mechanism (e.g. job control stop).
465
*/
466
if (psp->pr_why == PR_FAULTED && psp->pr_what == FLTBPT)
467
dt_proc_bpmatch(dtp, dpr);
468
else if (psp->pr_why == PR_SYSENTRY &&
469
IS_SYS_FORK(psp->pr_what))
470
dt_proc_bpdisable(dpr);
471
else if (psp->pr_why == PR_SYSEXIT &&
472
IS_SYS_FORK(psp->pr_what))
473
dt_proc_bpenable(dpr);
474
else if (psp->pr_why == PR_SYSEXIT &&
475
IS_SYS_EXEC(psp->pr_what))
476
dt_proc_attach(dpr, B_TRUE);
477
break;
478
479
case PS_LOST:
480
dt_dprintf("pid %d: proc lost: %s\n",
481
pid, strerror(errno));
482
483
dpr->dpr_quit = B_TRUE;
484
notify = B_TRUE;
485
break;
486
487
case PS_UNDEAD:
488
dt_dprintf("pid %d: proc died\n", pid);
489
dpr->dpr_quit = B_TRUE;
490
notify = B_TRUE;
491
break;
492
}
493
494
if (Pstate(P) != PS_UNDEAD) {
495
if (dpr->dpr_quit && dpr->dpr_close == DT_CLOSE_KILL) {
496
/*
497
* We're about to kill the child, so don't
498
* bother resuming it. In some cases, such as
499
* an initialization error, we shouldn't have
500
* started it in the first place, so letting it
501
* run could be harmful.
502
*/
503
} else if (Psetrun(P, 0, 0) == -1) {
504
dt_dprintf("pid %d: failed to set running: "
505
"%s\n", (int)dpr->dpr_pid, strerror(errno));
506
}
507
}
508
509
(void) pthread_mutex_unlock(&dpr->dpr_lock);
510
}
511
512
/*
513
* If the control thread detected PS_UNDEAD or PS_LOST, then enqueue
514
* the dt_proc_t structure on the dt_proc_hash_t notification list.
515
*/
516
if (notify)
517
dt_proc_notify(dtp, dph, dpr, NULL);
518
519
/*
520
* Destroy and remove any remaining breakpoints, set dpr_done and clear
521
* dpr_tid to indicate the control thread has exited, and notify any
522
* waiting thread in dt_proc_destroy() that we have succesfully exited.
523
*/
524
(void) pthread_mutex_lock(&dpr->dpr_lock);
525
526
dt_proc_bpdestroy(dpr, B_TRUE);
527
dpr->dpr_done = B_TRUE;
528
dpr->dpr_tid = 0;
529
530
(void) pthread_cond_broadcast(&dpr->dpr_cv);
531
(void) pthread_mutex_unlock(&dpr->dpr_lock);
532
533
return (NULL);
534
}
535
536
/*PRINTFLIKE3*/
537
static struct ps_prochandle *
538
dt_proc_error(dtrace_hdl_t *dtp, dt_proc_t *dpr, const char *format, ...)
539
{
540
va_list ap;
541
542
va_start(ap, format);
543
dt_set_errmsg(dtp, NULL, NULL, NULL, 0, format, ap);
544
va_end(ap);
545
546
if (dpr->dpr_proc != NULL)
547
Prelease(dpr->dpr_proc, 0);
548
549
dt_free(dtp, dpr);
550
(void) dt_set_errno(dtp, EDT_COMPILER);
551
return (NULL);
552
}
553
554
dt_proc_t *
555
dt_proc_lookup(dtrace_hdl_t *dtp, struct ps_prochandle *P, int remove)
556
{
557
dt_proc_hash_t *dph = dtp->dt_procs;
558
pid_t pid = proc_getpid(P);
559
dt_proc_t *dpr, **dpp = &dph->dph_hash[pid & (dph->dph_hashlen - 1)];
560
561
for (dpr = *dpp; dpr != NULL; dpr = dpr->dpr_hash) {
562
if (dpr->dpr_pid == pid)
563
break;
564
else
565
dpp = &dpr->dpr_hash;
566
}
567
568
assert(dpr != NULL);
569
assert(dpr->dpr_proc == P);
570
571
if (remove)
572
*dpp = dpr->dpr_hash; /* remove from pid hash chain */
573
574
return (dpr);
575
}
576
577
static void
578
dt_proc_destroy(dtrace_hdl_t *dtp, struct ps_prochandle *P)
579
{
580
dt_proc_t *dpr = dt_proc_lookup(dtp, P, B_FALSE);
581
dt_proc_hash_t *dph = dtp->dt_procs;
582
dt_proc_notify_t *npr, **npp;
583
int rflag;
584
585
assert(dpr != NULL);
586
587
switch (dpr->dpr_close) {
588
case DT_CLOSE_KILL:
589
dt_dprintf("killing pid %d\n", (int)dpr->dpr_pid);
590
rflag = PRELEASE_KILL;
591
break;
592
case DT_CLOSE_RUN:
593
dt_dprintf("releasing pid %d\n", (int)dpr->dpr_pid);
594
rflag = 0;
595
break;
596
}
597
598
if (dpr->dpr_tid) {
599
/*
600
* Set the dpr_quit flag to tell the daemon thread to exit. We
601
* send it a SIGCANCEL to poke it out of PCWSTOP or any other
602
* long-term /proc system call. Our daemon threads have POSIX
603
* cancellation disabled, so EINTR will be the only effect. We
604
* then wait for dpr_done to indicate the thread has exited.
605
*
606
* We can't use pthread_kill() to send SIGCANCEL because the
607
* interface forbids it and we can't use pthread_cancel()
608
* because with cancellation disabled it won't actually
609
* send SIGCANCEL to the target thread, so we use _lwp_kill()
610
* to do the job. This is all built on evil knowledge of
611
* the details of the cancellation mechanism in libc.
612
*/
613
(void) pthread_mutex_lock(&dpr->dpr_lock);
614
dpr->dpr_quit = B_TRUE;
615
pthread_kill(dpr->dpr_tid, SIGTHR);
616
617
/*
618
* If the process is currently idling in dt_proc_stop(), re-
619
* enable breakpoints and poke it into running again.
620
*/
621
if (dpr->dpr_stop & DT_PROC_STOP_IDLE) {
622
dt_proc_bpenable(dpr);
623
dpr->dpr_stop &= ~DT_PROC_STOP_IDLE;
624
(void) pthread_cond_broadcast(&dpr->dpr_cv);
625
}
626
627
while (!dpr->dpr_done)
628
(void) pthread_cond_wait(&dpr->dpr_cv, &dpr->dpr_lock);
629
630
(void) pthread_mutex_unlock(&dpr->dpr_lock);
631
}
632
633
/*
634
* Before we free the process structure, remove this dt_proc_t from the
635
* lookup hash, and then walk the dt_proc_hash_t's notification list
636
* and remove this dt_proc_t if it is enqueued.
637
*/
638
(void) pthread_mutex_lock(&dph->dph_lock);
639
(void) dt_proc_lookup(dtp, P, B_TRUE);
640
npp = &dph->dph_notify;
641
642
while ((npr = *npp) != NULL) {
643
if (npr->dprn_dpr == dpr) {
644
*npp = npr->dprn_next;
645
dt_free(dtp, npr);
646
} else {
647
npp = &npr->dprn_next;
648
}
649
}
650
651
(void) pthread_mutex_unlock(&dph->dph_lock);
652
653
/*
654
* Remove the dt_proc_list from the LRU list, release the underlying
655
* libproc handle, and free our dt_proc_t data structure.
656
*/
657
if (dpr->dpr_cacheable) {
658
assert(dph->dph_lrucnt != 0);
659
dph->dph_lrucnt--;
660
}
661
662
dt_list_delete(&dph->dph_lrulist, dpr);
663
Prelease(dpr->dpr_proc, rflag);
664
dt_free(dtp, dpr);
665
}
666
667
static int
668
dt_proc_create_thread(dtrace_hdl_t *dtp, dt_proc_t *dpr, uint_t stop)
669
{
670
dt_proc_control_data_t data;
671
sigset_t nset, oset;
672
pthread_attr_t a;
673
int err;
674
675
(void) pthread_mutex_lock(&dpr->dpr_lock);
676
dpr->dpr_stop |= stop; /* set bit for initial rendezvous */
677
678
(void) pthread_attr_init(&a);
679
(void) pthread_attr_setdetachstate(&a, PTHREAD_CREATE_DETACHED);
680
681
(void) sigfillset(&nset);
682
(void) sigdelset(&nset, SIGABRT); /* unblocked for assert() */
683
(void) sigdelset(&nset, SIGUSR1); /* see dt_proc_destroy() */
684
685
data.dpcd_hdl = dtp;
686
data.dpcd_proc = dpr;
687
688
(void) pthread_sigmask(SIG_SETMASK, &nset, &oset);
689
err = pthread_create(&dpr->dpr_tid, &a, dt_proc_control, &data);
690
(void) pthread_sigmask(SIG_SETMASK, &oset, NULL);
691
692
/*
693
* If the control thread was created, then wait on dpr_cv for either
694
* dpr_done to be set (the victim died or the control thread failed)
695
* or DT_PROC_STOP_IDLE to be set, indicating that the victim is now
696
* stopped by /proc and the control thread is at the rendezvous event.
697
* On success, we return with the process and control thread stopped:
698
* the caller can then apply dt_proc_continue() to resume both.
699
*/
700
if (err == 0) {
701
while (!dpr->dpr_done && !(dpr->dpr_stop & DT_PROC_STOP_IDLE))
702
(void) pthread_cond_wait(&dpr->dpr_cv, &dpr->dpr_lock);
703
704
/*
705
* If dpr_done is set, the control thread aborted before it
706
* reached the rendezvous event. This is either due to PS_LOST
707
* or PS_UNDEAD (i.e. the process died). We try to provide a
708
* small amount of useful information to help figure it out.
709
*/
710
if (dpr->dpr_done) {
711
int stat = proc_getwstat(dpr->dpr_proc);
712
int pid = proc_getpid(dpr->dpr_proc);
713
if (proc_state(dpr->dpr_proc) == PS_LOST) {
714
(void) dt_proc_error(dpr->dpr_hdl, dpr,
715
"failed to control pid %d: process exec'd "
716
"set-id or unobservable program\n", pid);
717
} else if (WIFSIGNALED(stat)) {
718
(void) dt_proc_error(dpr->dpr_hdl, dpr,
719
"failed to control pid %d: process died "
720
"from signal %d\n", pid, WTERMSIG(stat));
721
} else {
722
(void) dt_proc_error(dpr->dpr_hdl, dpr,
723
"failed to control pid %d: process exited "
724
"with status %d\n", pid, WEXITSTATUS(stat));
725
}
726
727
err = ESRCH; /* cause grab() or create() to fail */
728
}
729
} else {
730
(void) dt_proc_error(dpr->dpr_hdl, dpr,
731
"failed to create control thread for process-id %d: %s\n",
732
(int)dpr->dpr_pid, strerror(err));
733
}
734
735
if (err == 0)
736
(void) pthread_mutex_unlock(&dpr->dpr_lock);
737
(void) pthread_attr_destroy(&a);
738
739
return (err);
740
}
741
742
struct ps_prochandle *
743
dt_proc_create(dtrace_hdl_t *dtp, const char *file, char *const *argv,
744
proc_child_func *pcf, void *child_arg)
745
{
746
dt_proc_hash_t *dph = dtp->dt_procs;
747
dt_proc_t *dpr;
748
int err;
749
750
if ((dpr = dt_zalloc(dtp, sizeof (dt_proc_t))) == NULL)
751
return (NULL); /* errno is set for us */
752
753
(void) pthread_mutex_init(&dpr->dpr_lock, NULL);
754
(void) pthread_cond_init(&dpr->dpr_cv, NULL);
755
756
if ((err = proc_create(file, argv, dtp->dt_proc_env, pcf, child_arg,
757
&dpr->dpr_proc)) != 0) {
758
return (dt_proc_error(dtp, dpr,
759
"failed to execute %s: %s\n", file, Pcreate_error(err)));
760
}
761
762
dpr->dpr_hdl = dtp;
763
dpr->dpr_pid = proc_getpid(dpr->dpr_proc);
764
dpr->dpr_close = DT_CLOSE_KILL;
765
766
if (dt_proc_create_thread(dtp, dpr, dtp->dt_prcmode) != 0)
767
return (NULL); /* dt_proc_error() has been called for us */
768
769
dpr->dpr_hash = dph->dph_hash[dpr->dpr_pid & (dph->dph_hashlen - 1)];
770
dph->dph_hash[dpr->dpr_pid & (dph->dph_hashlen - 1)] = dpr;
771
dt_list_prepend(&dph->dph_lrulist, dpr);
772
773
dt_dprintf("created pid %d\n", (int)dpr->dpr_pid);
774
dpr->dpr_refs++;
775
776
return (dpr->dpr_proc);
777
}
778
779
struct ps_prochandle *
780
dt_proc_grab(dtrace_hdl_t *dtp, pid_t pid, int flags, int nomonitor)
781
{
782
dt_proc_hash_t *dph = dtp->dt_procs;
783
uint_t h = pid & (dph->dph_hashlen - 1);
784
dt_proc_t *dpr, *opr;
785
int err;
786
787
/*
788
* Search the hash table for the pid. If it is already grabbed or
789
* created, move the handle to the front of the lrulist, increment
790
* the reference count, and return the existing ps_prochandle.
791
*/
792
for (dpr = dph->dph_hash[h]; dpr != NULL; dpr = dpr->dpr_hash) {
793
if (dpr->dpr_pid == pid && !dpr->dpr_stale) {
794
/*
795
* If the cached handle was opened read-only and
796
* this request is for a writeable handle, mark
797
* the cached handle as stale and open a new handle.
798
* Since it's stale, unmark it as cacheable.
799
*/
800
if (dpr->dpr_rdonly && !(flags & PGRAB_RDONLY)) {
801
dt_dprintf("upgrading pid %d\n", (int)pid);
802
dpr->dpr_stale = B_TRUE;
803
dpr->dpr_cacheable = B_FALSE;
804
dph->dph_lrucnt--;
805
break;
806
}
807
808
dt_dprintf("grabbed pid %d (cached)\n", (int)pid);
809
dt_list_delete(&dph->dph_lrulist, dpr);
810
dt_list_prepend(&dph->dph_lrulist, dpr);
811
dpr->dpr_refs++;
812
return (dpr->dpr_proc);
813
}
814
}
815
816
if ((dpr = dt_zalloc(dtp, sizeof (dt_proc_t))) == NULL)
817
return (NULL); /* errno is set for us */
818
819
(void) pthread_mutex_init(&dpr->dpr_lock, NULL);
820
(void) pthread_cond_init(&dpr->dpr_cv, NULL);
821
822
if ((err = proc_attach(pid, flags, &dpr->dpr_proc)) != 0) {
823
return (dt_proc_error(dtp, dpr,
824
"failed to grab pid %d: %s\n", (int)pid, Pgrab_error(err)));
825
}
826
827
dpr->dpr_hdl = dtp;
828
dpr->dpr_pid = pid;
829
dpr->dpr_close = DT_CLOSE_RUN;
830
831
/*
832
* If we are attempting to grab the process without a monitor
833
* thread, then mark the process cacheable only if it's being
834
* grabbed read-only. If we're currently caching more process
835
* handles than dph_lrulim permits, attempt to find the
836
* least-recently-used handle that is currently unreferenced and
837
* release it from the cache. Otherwise we are grabbing the process
838
* for control: create a control thread for this process and store
839
* its ID in dpr->dpr_tid.
840
*/
841
if (nomonitor || (flags & PGRAB_RDONLY)) {
842
if (dph->dph_lrucnt >= dph->dph_lrulim) {
843
for (opr = dt_list_prev(&dph->dph_lrulist);
844
opr != NULL; opr = dt_list_prev(opr)) {
845
if (opr->dpr_cacheable && opr->dpr_refs == 0) {
846
dt_proc_destroy(dtp, opr->dpr_proc);
847
break;
848
}
849
}
850
}
851
852
if (flags & PGRAB_RDONLY) {
853
dpr->dpr_cacheable = B_TRUE;
854
dpr->dpr_rdonly = B_TRUE;
855
dph->dph_lrucnt++;
856
}
857
858
} else if (dt_proc_create_thread(dtp, dpr, DT_PROC_STOP_GRAB) != 0)
859
return (NULL); /* dt_proc_error() has been called for us */
860
861
dpr->dpr_hash = dph->dph_hash[h];
862
dph->dph_hash[h] = dpr;
863
dt_list_prepend(&dph->dph_lrulist, dpr);
864
865
dt_dprintf("grabbed pid %d\n", (int)pid);
866
dpr->dpr_refs++;
867
868
return (dpr->dpr_proc);
869
}
870
871
void
872
dt_proc_release(dtrace_hdl_t *dtp, struct ps_prochandle *P)
873
{
874
dt_proc_t *dpr = dt_proc_lookup(dtp, P, B_FALSE);
875
dt_proc_hash_t *dph = dtp->dt_procs;
876
877
assert(dpr != NULL);
878
assert(dpr->dpr_refs != 0);
879
880
if (--dpr->dpr_refs == 0 &&
881
(!dpr->dpr_cacheable || dph->dph_lrucnt > dph->dph_lrulim))
882
dt_proc_destroy(dtp, P);
883
}
884
885
void
886
dt_proc_continue(dtrace_hdl_t *dtp, struct ps_prochandle *P)
887
{
888
dt_proc_t *dpr = dt_proc_lookup(dtp, P, B_FALSE);
889
890
(void) pthread_mutex_lock(&dpr->dpr_lock);
891
892
if (dpr->dpr_stop & DT_PROC_STOP_IDLE) {
893
dpr->dpr_stop &= ~DT_PROC_STOP_IDLE;
894
(void) pthread_cond_broadcast(&dpr->dpr_cv);
895
}
896
897
(void) pthread_mutex_unlock(&dpr->dpr_lock);
898
}
899
900
void
901
dt_proc_lock(dtrace_hdl_t *dtp, struct ps_prochandle *P)
902
{
903
dt_proc_t *dpr = dt_proc_lookup(dtp, P, B_FALSE);
904
int err = pthread_mutex_lock(&dpr->dpr_lock);
905
assert(err == 0); /* check for recursion */
906
}
907
908
void
909
dt_proc_unlock(dtrace_hdl_t *dtp, struct ps_prochandle *P)
910
{
911
dt_proc_t *dpr = dt_proc_lookup(dtp, P, B_FALSE);
912
int err = pthread_mutex_unlock(&dpr->dpr_lock);
913
assert(err == 0); /* check for unheld lock */
914
}
915
916
void
917
dt_proc_init(dtrace_hdl_t *dtp)
918
{
919
extern char **environ;
920
static char *envdef[] = {
921
"LD_NOLAZYLOAD=1", /* linker lazy loading hides funcs */
922
NULL
923
};
924
char **p;
925
int i;
926
927
if ((dtp->dt_procs = dt_zalloc(dtp, sizeof (dt_proc_hash_t) +
928
sizeof (dt_proc_t *) * _dtrace_pidbuckets - 1)) == NULL)
929
return;
930
931
(void) pthread_mutex_init(&dtp->dt_procs->dph_lock, NULL);
932
(void) pthread_cond_init(&dtp->dt_procs->dph_cv, NULL);
933
934
dtp->dt_procs->dph_hashlen = _dtrace_pidbuckets;
935
dtp->dt_procs->dph_lrulim = _dtrace_pidlrulim;
936
937
/*
938
* Count how big our environment needs to be.
939
*/
940
for (i = 1, p = environ; *p != NULL; i++, p++)
941
continue;
942
for (p = envdef; *p != NULL; i++, p++)
943
continue;
944
945
if ((dtp->dt_proc_env = dt_zalloc(dtp, sizeof (char *) * i)) == NULL)
946
return;
947
948
for (i = 0, p = environ; *p != NULL; i++, p++) {
949
if ((dtp->dt_proc_env[i] = strdup(*p)) == NULL)
950
goto err;
951
}
952
for (p = envdef; *p != NULL; i++, p++) {
953
if ((dtp->dt_proc_env[i] = strdup(*p)) == NULL)
954
goto err;
955
}
956
957
return;
958
959
err:
960
while (--i != 0) {
961
dt_free(dtp, dtp->dt_proc_env[i]);
962
}
963
dt_free(dtp, dtp->dt_proc_env);
964
dtp->dt_proc_env = NULL;
965
}
966
967
void
968
dt_proc_fini(dtrace_hdl_t *dtp)
969
{
970
dt_proc_hash_t *dph = dtp->dt_procs;
971
dt_proc_t *dpr;
972
char **p;
973
974
while ((dpr = dt_list_next(&dph->dph_lrulist)) != NULL)
975
dt_proc_destroy(dtp, dpr->dpr_proc);
976
977
dtp->dt_procs = NULL;
978
dt_free(dtp, dph);
979
980
for (p = dtp->dt_proc_env; *p != NULL; p++)
981
dt_free(dtp, *p);
982
983
dt_free(dtp, dtp->dt_proc_env);
984
dtp->dt_proc_env = NULL;
985
}
986
987
struct ps_prochandle *
988
dtrace_proc_create(dtrace_hdl_t *dtp, const char *file, char *const *argv,
989
proc_child_func *pcf, void *child_arg)
990
{
991
dt_ident_t *idp = dt_idhash_lookup(dtp->dt_macros, "target");
992
struct ps_prochandle *P = dt_proc_create(dtp, file, argv, pcf, child_arg);
993
994
if (P != NULL && idp != NULL && idp->di_id == 0) {
995
idp->di_id = proc_getpid(P); /* $target = created pid */
996
}
997
998
return (P);
999
}
1000
1001
struct ps_prochandle *
1002
dtrace_proc_grab(dtrace_hdl_t *dtp, pid_t pid, int flags)
1003
{
1004
dt_ident_t *idp = dt_idhash_lookup(dtp->dt_macros, "target");
1005
struct ps_prochandle *P = dt_proc_grab(dtp, pid, flags, 0);
1006
1007
if (P != NULL && idp != NULL && idp->di_id == 0)
1008
idp->di_id = pid; /* $target = grabbed pid */
1009
1010
return (P);
1011
}
1012
1013
void
1014
dtrace_proc_release(dtrace_hdl_t *dtp, struct ps_prochandle *P)
1015
{
1016
dt_proc_release(dtp, P);
1017
}
1018
1019
void
1020
dtrace_proc_continue(dtrace_hdl_t *dtp, struct ps_prochandle *P)
1021
{
1022
dt_proc_continue(dtp, P);
1023
}
1024
1025