Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/cddl/contrib/opensolaris/tools/ctf/cvt/ctf.c
39586 views
1
/*
2
* CDDL HEADER START
3
*
4
* The contents of this file are subject to the terms of the
5
* Common Development and Distribution License (the "License").
6
* You may not use this file except in compliance with the License.
7
*
8
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9
* or http://www.opensolaris.org/os/licensing.
10
* See the License for the specific language governing permissions
11
* and limitations under the License.
12
*
13
* When distributing Covered Code, include this CDDL HEADER in each
14
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15
* If applicable, add the following below this CDDL HEADER, with the
16
* fields enclosed by brackets "[]" replaced with your own identifying
17
* information: Portions Copyright [yyyy] [name of copyright owner]
18
*
19
* CDDL HEADER END
20
*/
21
/*
22
* Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23
* Use is subject to license terms.
24
*/
25
26
/*
27
* Create and parse buffers containing CTF data.
28
*/
29
30
#include <sys/types.h>
31
#include <stdio.h>
32
#include <stdlib.h>
33
#include <strings.h>
34
#include <ctype.h>
35
#include <zlib.h>
36
#include <elf.h>
37
38
#include "ctf_headers.h"
39
#include "ctftools.h"
40
#include "strtab.h"
41
#include "memory.h"
42
43
/*
44
* Name of the file currently being read, used to print error messages. We
45
* assume that only one file will be read at a time, and thus make no attempt
46
* to allow curfile to be used simultaneously by multiple threads.
47
*
48
* The value is only valid during a call to ctf_load.
49
*/
50
static char *curfile;
51
52
#define CTF_BUF_CHUNK_SIZE (64 * 1024)
53
#define RES_BUF_CHUNK_SIZE (64 * 1024)
54
55
struct ctf_buf {
56
strtab_t ctb_strtab; /* string table */
57
caddr_t ctb_base; /* pointer to base of buffer */
58
caddr_t ctb_end; /* pointer to end of buffer */
59
caddr_t ctb_ptr; /* pointer to empty buffer space */
60
size_t ctb_size; /* size of buffer */
61
uint_t nptent; /* number of processed types */
62
};
63
64
/*
65
* Macros to reverse byte order
66
*/
67
#define BSWAP_8(x) ((x) & 0xff)
68
#define BSWAP_16(x) ((BSWAP_8(x) << 8) | BSWAP_8((x) >> 8))
69
#define BSWAP_32(x) ((BSWAP_16(x) << 16) | BSWAP_16((x) >> 16))
70
71
#define SWAP_16(x) (x) = BSWAP_16(x)
72
#define SWAP_32(x) (x) = BSWAP_32(x)
73
74
static int target_requires_swap;
75
76
/*PRINTFLIKE1*/
77
static void
78
parseterminate(const char *fmt, ...)
79
{
80
static char msgbuf[1024]; /* sigh */
81
va_list ap;
82
83
va_start(ap, fmt);
84
vsnprintf(msgbuf, sizeof (msgbuf), fmt, ap);
85
va_end(ap);
86
87
terminate("%s: %s\n", curfile, msgbuf);
88
}
89
90
static void
91
ctf_buf_grow(ctf_buf_t *b)
92
{
93
off_t ptroff = b->ctb_ptr - b->ctb_base;
94
95
b->ctb_size += CTF_BUF_CHUNK_SIZE;
96
b->ctb_base = xrealloc(b->ctb_base, b->ctb_size);
97
b->ctb_end = b->ctb_base + b->ctb_size;
98
b->ctb_ptr = b->ctb_base + ptroff;
99
}
100
101
static ctf_buf_t *
102
ctf_buf_new(void)
103
{
104
ctf_buf_t *b = xcalloc(sizeof (ctf_buf_t));
105
106
strtab_create(&b->ctb_strtab);
107
ctf_buf_grow(b);
108
109
return (b);
110
}
111
112
static void
113
ctf_buf_free(ctf_buf_t *b)
114
{
115
strtab_destroy(&b->ctb_strtab);
116
free(b->ctb_base);
117
free(b);
118
}
119
120
static uint_t
121
ctf_buf_cur(ctf_buf_t *b)
122
{
123
return (b->ctb_ptr - b->ctb_base);
124
}
125
126
static void
127
ctf_buf_write(ctf_buf_t *b, void const *p, size_t n)
128
{
129
size_t len;
130
131
while (n != 0) {
132
if (b->ctb_ptr == b->ctb_end)
133
ctf_buf_grow(b);
134
135
len = MIN((size_t)(b->ctb_end - b->ctb_ptr), n);
136
bcopy(p, b->ctb_ptr, len);
137
b->ctb_ptr += len;
138
139
p = (char const *)p + len;
140
n -= len;
141
}
142
}
143
144
static int
145
write_label(void *arg1, void *arg2)
146
{
147
labelent_t *le = arg1;
148
ctf_buf_t *b = arg2;
149
ctf_lblent_t ctl;
150
151
ctl.ctl_label = strtab_insert(&b->ctb_strtab, le->le_name);
152
ctl.ctl_typeidx = le->le_idx;
153
154
if (target_requires_swap) {
155
SWAP_32(ctl.ctl_label);
156
SWAP_32(ctl.ctl_typeidx);
157
}
158
159
ctf_buf_write(b, &ctl, sizeof (ctl));
160
161
return (1);
162
}
163
164
static void
165
write_objects(iidesc_t *idp, ctf_buf_t *b)
166
{
167
uint_t id = (idp ? idp->ii_dtype->t_id : 0);
168
169
if (target_requires_swap) {
170
SWAP_32(id);
171
}
172
173
ctf_buf_write(b, &id, sizeof (id));
174
175
debug(3, "Wrote object %s (%d)\n", (idp ? idp->ii_name : "(null)"), id);
176
}
177
178
static void
179
write_functions(iidesc_t *idp, ctf_buf_t *b)
180
{
181
uint_t fdata[2];
182
uint_t id;
183
int nargs;
184
int i;
185
186
if (!idp) {
187
fdata[0] = 0;
188
ctf_buf_write(b, &fdata[0], sizeof (fdata[0]));
189
190
debug(3, "Wrote function (null)\n");
191
return;
192
}
193
194
nargs = idp->ii_nargs + (idp->ii_vargs != 0);
195
196
if (nargs > CTF_V3_MAX_VLEN) {
197
terminate("function %s has too many args: %d > %d\n",
198
idp->ii_name, nargs, CTF_V3_MAX_VLEN);
199
}
200
201
fdata[0] = CTF_V3_TYPE_INFO(CTF_K_FUNCTION, 1, nargs);
202
fdata[1] = idp->ii_dtype->t_id;
203
204
if (target_requires_swap) {
205
SWAP_32(fdata[0]);
206
SWAP_32(fdata[1]);
207
}
208
209
ctf_buf_write(b, fdata, sizeof (fdata));
210
211
for (i = 0; i < idp->ii_nargs; i++) {
212
id = idp->ii_args[i]->t_id;
213
214
if (target_requires_swap) {
215
SWAP_32(id);
216
}
217
218
ctf_buf_write(b, &id, sizeof (id));
219
}
220
221
if (idp->ii_vargs) {
222
id = 0;
223
ctf_buf_write(b, &id, sizeof (id));
224
}
225
226
debug(3, "Wrote function %s (%d args)\n", idp->ii_name, nargs);
227
}
228
229
/*
230
* Depending on the size of the type being described, either a ctf_stype_t (for
231
* types with size < CTF_LSTRUCT_THRESH) or a ctf_type_t (all others) will be
232
* written. We isolate the determination here so the rest of the writer code
233
* doesn't need to care.
234
*/
235
static void
236
write_sized_type_rec(ctf_buf_t *b, struct ctf_type_v3 *ctt, size_t size)
237
{
238
if (size > CTF_V3_MAX_SIZE) {
239
ctt->ctt_size = CTF_V3_LSIZE_SENT;
240
ctt->ctt_lsizehi = CTF_SIZE_TO_LSIZE_HI(size);
241
ctt->ctt_lsizelo = CTF_SIZE_TO_LSIZE_LO(size);
242
if (target_requires_swap) {
243
SWAP_32(ctt->ctt_name);
244
SWAP_32(ctt->ctt_info);
245
SWAP_32(ctt->ctt_size);
246
SWAP_32(ctt->ctt_lsizehi);
247
SWAP_32(ctt->ctt_lsizelo);
248
}
249
ctf_buf_write(b, ctt, sizeof (*ctt));
250
} else {
251
struct ctf_stype_v3 *cts = (struct ctf_stype_v3 *)ctt;
252
253
cts->ctt_size = size;
254
255
if (target_requires_swap) {
256
SWAP_32(cts->ctt_name);
257
SWAP_32(cts->ctt_info);
258
SWAP_32(cts->ctt_size);
259
}
260
261
ctf_buf_write(b, cts, sizeof (*cts));
262
}
263
}
264
265
static void
266
write_unsized_type_rec(ctf_buf_t *b, struct ctf_type_v3 *ctt)
267
{
268
struct ctf_stype_v3 *cts = (struct ctf_stype_v3 *)ctt;
269
270
if (target_requires_swap) {
271
SWAP_32(cts->ctt_name);
272
SWAP_32(cts->ctt_info);
273
SWAP_32(cts->ctt_size);
274
}
275
276
ctf_buf_write(b, cts, sizeof (*cts));
277
}
278
279
static int
280
write_type(void *arg1, void *arg2)
281
{
282
tdesc_t *tp = arg1;
283
ctf_buf_t *b = arg2;
284
elist_t *ep;
285
mlist_t *mp;
286
intr_t *ip;
287
288
size_t offset;
289
uint_t encoding;
290
uint_t data;
291
int isroot = tp->t_flags & TDESC_F_ISROOT;
292
int i;
293
294
struct ctf_type_v3 ctt;
295
struct ctf_array_v3 cta;
296
struct ctf_member_v3 ctm;
297
struct ctf_lmember_v3 ctlm;
298
struct ctf_enum cte;
299
uint_t id;
300
301
/*
302
* There shouldn't be any holes in the type list (where a hole is
303
* defined as two consecutive tdescs without consecutive ids), but
304
* check for them just in case. If we do find holes, we need to make
305
* fake entries to fill the holes, or we won't be able to reconstruct
306
* the tree from the written data.
307
*/
308
if (++b->nptent < CTF_V3_TYPE_TO_INDEX(tp->t_id)) {
309
debug(2, "genctf: type hole from %d < x < %d\n",
310
b->nptent - 1, CTF_V3_TYPE_TO_INDEX(tp->t_id));
311
312
ctt.ctt_name = CTF_TYPE_NAME(CTF_STRTAB_0, 0);
313
ctt.ctt_info = CTF_V3_TYPE_INFO(0, 0, 0);
314
while (b->nptent < CTF_V3_TYPE_TO_INDEX(tp->t_id)) {
315
write_sized_type_rec(b, &ctt, 0);
316
b->nptent++;
317
}
318
}
319
320
offset = strtab_insert(&b->ctb_strtab, tp->t_name);
321
ctt.ctt_name = CTF_TYPE_NAME(CTF_STRTAB_0, offset);
322
323
switch (tp->t_type) {
324
case INTRINSIC:
325
ip = tp->t_intr;
326
if (ip->intr_type == INTR_INT)
327
ctt.ctt_info = CTF_V3_TYPE_INFO(CTF_K_INTEGER,
328
isroot, 1);
329
else
330
ctt.ctt_info = CTF_V3_TYPE_INFO(CTF_K_FLOAT, isroot, 1);
331
write_sized_type_rec(b, &ctt, tp->t_size);
332
333
encoding = 0;
334
335
if (ip->intr_type == INTR_INT) {
336
if (ip->intr_signed)
337
encoding |= CTF_INT_SIGNED;
338
if (ip->intr_iformat == 'c')
339
encoding |= CTF_INT_CHAR;
340
else if (ip->intr_iformat == 'b')
341
encoding |= CTF_INT_BOOL;
342
else if (ip->intr_iformat == 'v')
343
encoding |= CTF_INT_VARARGS;
344
} else
345
encoding = ip->intr_fformat;
346
347
data = CTF_INT_DATA(encoding, ip->intr_offset, ip->intr_nbits);
348
if (target_requires_swap) {
349
SWAP_32(data);
350
}
351
ctf_buf_write(b, &data, sizeof (data));
352
break;
353
354
case POINTER:
355
ctt.ctt_info = CTF_V3_TYPE_INFO(CTF_K_POINTER, isroot, 0);
356
ctt.ctt_type = tp->t_tdesc->t_id;
357
write_unsized_type_rec(b, &ctt);
358
break;
359
360
case ARRAY:
361
ctt.ctt_info = CTF_V3_TYPE_INFO(CTF_K_ARRAY, isroot, 1);
362
write_sized_type_rec(b, &ctt, tp->t_size);
363
364
cta.cta_contents = tp->t_ardef->ad_contents->t_id;
365
cta.cta_index = tp->t_ardef->ad_idxtype->t_id;
366
cta.cta_nelems = tp->t_ardef->ad_nelems;
367
if (target_requires_swap) {
368
SWAP_32(cta.cta_contents);
369
SWAP_32(cta.cta_index);
370
SWAP_32(cta.cta_nelems);
371
}
372
ctf_buf_write(b, &cta, sizeof (cta));
373
break;
374
375
case STRUCT:
376
case UNION:
377
for (i = 0, mp = tp->t_members; mp != NULL; mp = mp->ml_next)
378
i++; /* count up struct or union members */
379
380
if (i > CTF_V3_MAX_VLEN) {
381
terminate("sou %s has too many members: %d > %d\n",
382
tdesc_name(tp), i, CTF_V3_MAX_VLEN);
383
}
384
385
if (tp->t_type == STRUCT)
386
ctt.ctt_info = CTF_V3_TYPE_INFO(CTF_K_STRUCT, isroot, i);
387
else
388
ctt.ctt_info = CTF_V3_TYPE_INFO(CTF_K_UNION, isroot, i);
389
390
write_sized_type_rec(b, &ctt, tp->t_size);
391
392
if (tp->t_size < CTF_V3_LSTRUCT_THRESH) {
393
for (mp = tp->t_members; mp != NULL; mp = mp->ml_next) {
394
offset = strtab_insert(&b->ctb_strtab,
395
mp->ml_name);
396
397
ctm.ctm_name = CTF_TYPE_NAME(CTF_STRTAB_0,
398
offset);
399
ctm.ctm_type = mp->ml_type->t_id;
400
ctm.ctm_offset = mp->ml_offset;
401
if (target_requires_swap) {
402
SWAP_32(ctm.ctm_name);
403
SWAP_32(ctm.ctm_type);
404
SWAP_32(ctm.ctm_offset);
405
}
406
ctf_buf_write(b, &ctm, sizeof (ctm));
407
}
408
} else {
409
for (mp = tp->t_members; mp != NULL; mp = mp->ml_next) {
410
offset = strtab_insert(&b->ctb_strtab,
411
mp->ml_name);
412
413
ctlm.ctlm_name = CTF_TYPE_NAME(CTF_STRTAB_0,
414
offset);
415
ctlm.ctlm_type = mp->ml_type->t_id;
416
ctlm.ctlm_offsethi =
417
CTF_OFFSET_TO_LMEMHI(mp->ml_offset);
418
ctlm.ctlm_offsetlo =
419
CTF_OFFSET_TO_LMEMLO(mp->ml_offset);
420
421
if (target_requires_swap) {
422
SWAP_32(ctlm.ctlm_name);
423
SWAP_32(ctlm.ctlm_type);
424
SWAP_32(ctlm.ctlm_offsethi);
425
SWAP_32(ctlm.ctlm_offsetlo);
426
}
427
428
ctf_buf_write(b, &ctlm, sizeof (ctlm));
429
}
430
}
431
break;
432
433
case ENUM:
434
for (i = 0, ep = tp->t_emem; ep != NULL; ep = ep->el_next)
435
i++; /* count up enum members */
436
437
if (i > CTF_V3_MAX_VLEN) {
438
i = CTF_V3_MAX_VLEN;
439
}
440
441
ctt.ctt_info = CTF_V3_TYPE_INFO(CTF_K_ENUM, isroot, i);
442
write_sized_type_rec(b, &ctt, tp->t_size);
443
444
for (ep = tp->t_emem; ep != NULL && i > 0; ep = ep->el_next) {
445
offset = strtab_insert(&b->ctb_strtab, ep->el_name);
446
cte.cte_name = CTF_TYPE_NAME(CTF_STRTAB_0, offset);
447
cte.cte_value = ep->el_number;
448
449
if (target_requires_swap) {
450
SWAP_32(cte.cte_name);
451
SWAP_32(cte.cte_value);
452
}
453
454
ctf_buf_write(b, &cte, sizeof (cte));
455
i--;
456
}
457
break;
458
459
case FORWARD:
460
ctt.ctt_info = CTF_V3_TYPE_INFO(CTF_K_FORWARD, isroot, 0);
461
ctt.ctt_type = 0;
462
write_unsized_type_rec(b, &ctt);
463
break;
464
465
case TYPEDEF:
466
ctt.ctt_info = CTF_V3_TYPE_INFO(CTF_K_TYPEDEF, isroot, 0);
467
ctt.ctt_type = tp->t_tdesc->t_id;
468
write_unsized_type_rec(b, &ctt);
469
break;
470
471
case VOLATILE:
472
ctt.ctt_info = CTF_V3_TYPE_INFO(CTF_K_VOLATILE, isroot, 0);
473
ctt.ctt_type = tp->t_tdesc->t_id;
474
write_unsized_type_rec(b, &ctt);
475
break;
476
477
case CONST:
478
ctt.ctt_info = CTF_V3_TYPE_INFO(CTF_K_CONST, isroot, 0);
479
ctt.ctt_type = tp->t_tdesc->t_id;
480
write_unsized_type_rec(b, &ctt);
481
break;
482
483
case FUNCTION:
484
i = tp->t_fndef->fn_nargs + tp->t_fndef->fn_vargs;
485
486
if (i > CTF_V3_MAX_VLEN) {
487
terminate("function %s has too many args: %d > %d\n",
488
tdesc_name(tp), i, CTF_V3_MAX_VLEN);
489
}
490
491
ctt.ctt_info = CTF_V3_TYPE_INFO(CTF_K_FUNCTION, isroot, i);
492
ctt.ctt_type = tp->t_fndef->fn_ret->t_id;
493
write_unsized_type_rec(b, &ctt);
494
495
for (i = 0; i < (int) tp->t_fndef->fn_nargs; i++) {
496
id = tp->t_fndef->fn_args[i]->t_id;
497
498
if (target_requires_swap) {
499
SWAP_32(id);
500
}
501
502
ctf_buf_write(b, &id, sizeof (id));
503
}
504
505
if (tp->t_fndef->fn_vargs) {
506
id = 0;
507
ctf_buf_write(b, &id, sizeof (id));
508
i++;
509
}
510
511
break;
512
513
case RESTRICT:
514
ctt.ctt_info = CTF_V3_TYPE_INFO(CTF_K_RESTRICT, isroot, 0);
515
ctt.ctt_type = tp->t_tdesc->t_id;
516
write_unsized_type_rec(b, &ctt);
517
break;
518
519
default:
520
warning("Can't write unknown type %d\n", tp->t_type);
521
}
522
523
debug(3, "Wrote type %d %s\n", tp->t_id, tdesc_name(tp));
524
525
return (1);
526
}
527
528
typedef struct resbuf {
529
caddr_t rb_base;
530
caddr_t rb_ptr;
531
size_t rb_size;
532
z_stream rb_zstr;
533
} resbuf_t;
534
535
static void
536
rbzs_grow(resbuf_t *rb)
537
{
538
off_t ptroff = (caddr_t)rb->rb_zstr.next_out - rb->rb_base;
539
540
rb->rb_size += RES_BUF_CHUNK_SIZE;
541
rb->rb_base = xrealloc(rb->rb_base, rb->rb_size);
542
rb->rb_ptr = rb->rb_base + ptroff;
543
rb->rb_zstr.next_out = (Bytef *)(rb->rb_ptr);
544
rb->rb_zstr.avail_out += RES_BUF_CHUNK_SIZE;
545
}
546
547
static void
548
compress_start(resbuf_t *rb)
549
{
550
int rc;
551
552
rb->rb_zstr.zalloc = (alloc_func)0;
553
rb->rb_zstr.zfree = (free_func)0;
554
rb->rb_zstr.opaque = (voidpf)0;
555
556
if ((rc = deflateInit(&rb->rb_zstr, Z_BEST_COMPRESSION)) != Z_OK)
557
parseterminate("zlib start failed: %s", zError(rc));
558
}
559
560
static ssize_t
561
compress_buffer(void *buf, size_t n, void *data)
562
{
563
resbuf_t *rb = (resbuf_t *)data;
564
int rc;
565
566
rb->rb_zstr.next_out = (Bytef *)rb->rb_ptr;
567
rb->rb_zstr.avail_out = rb->rb_size - (rb->rb_ptr - rb->rb_base);
568
rb->rb_zstr.next_in = buf;
569
rb->rb_zstr.avail_in = n;
570
571
while (rb->rb_zstr.avail_in) {
572
if (rb->rb_zstr.avail_out == 0)
573
rbzs_grow(rb);
574
575
if ((rc = deflate(&rb->rb_zstr, Z_NO_FLUSH)) != Z_OK)
576
parseterminate("zlib deflate failed: %s", zError(rc));
577
}
578
rb->rb_ptr = (caddr_t)rb->rb_zstr.next_out;
579
580
return (n);
581
}
582
583
static void
584
compress_flush(resbuf_t *rb, int type)
585
{
586
int rc;
587
588
for (;;) {
589
if (rb->rb_zstr.avail_out == 0)
590
rbzs_grow(rb);
591
592
rc = deflate(&rb->rb_zstr, type);
593
if ((type == Z_FULL_FLUSH && rc == Z_BUF_ERROR) ||
594
(type == Z_FINISH && rc == Z_STREAM_END))
595
break;
596
else if (rc != Z_OK)
597
parseterminate("zlib finish failed: %s", zError(rc));
598
}
599
rb->rb_ptr = (caddr_t)rb->rb_zstr.next_out;
600
}
601
602
static void
603
compress_end(resbuf_t *rb)
604
{
605
int rc;
606
607
compress_flush(rb, Z_FINISH);
608
609
if ((rc = deflateEnd(&rb->rb_zstr)) != Z_OK)
610
parseterminate("zlib end failed: %s", zError(rc));
611
}
612
613
/*
614
* Pad the buffer to a power-of-2 boundary
615
*/
616
static void
617
pad_buffer(ctf_buf_t *buf, int align)
618
{
619
uint_t cur = ctf_buf_cur(buf);
620
ssize_t topad = (align - (cur % align)) % align;
621
static const char pad[8] = { 0 };
622
623
while (topad > 0) {
624
ctf_buf_write(buf, pad, (topad > 8 ? 8 : topad));
625
topad -= 8;
626
}
627
}
628
629
static ssize_t
630
bcopy_data(void *buf, size_t n, void *data)
631
{
632
caddr_t *posp = (caddr_t *)data;
633
bcopy(buf, *posp, n);
634
*posp += n;
635
return (n);
636
}
637
638
static caddr_t
639
write_buffer(ctf_header_t *h, ctf_buf_t *buf, size_t *resszp)
640
{
641
caddr_t outbuf;
642
caddr_t bufpos;
643
644
outbuf = xmalloc(sizeof (ctf_header_t) + (buf->ctb_ptr - buf->ctb_base)
645
+ buf->ctb_strtab.str_size);
646
647
bufpos = outbuf;
648
(void) bcopy_data(h, sizeof (ctf_header_t), &bufpos);
649
(void) bcopy_data(buf->ctb_base, buf->ctb_ptr - buf->ctb_base,
650
&bufpos);
651
(void) strtab_write(&buf->ctb_strtab, bcopy_data, &bufpos);
652
*resszp = bufpos - outbuf;
653
return (outbuf);
654
}
655
656
/*
657
* Create the compression buffer, and fill it with the CTF and string
658
* table data. We flush the compression state between the two so the
659
* dictionary used for the string tables won't be polluted with values
660
* that made sense for the CTF data.
661
*/
662
static caddr_t
663
write_compressed_buffer(ctf_header_t *h, ctf_buf_t *buf, size_t *resszp)
664
{
665
resbuf_t resbuf;
666
resbuf.rb_size = RES_BUF_CHUNK_SIZE;
667
resbuf.rb_base = xmalloc(resbuf.rb_size);
668
bcopy(h, resbuf.rb_base, sizeof (ctf_header_t));
669
resbuf.rb_ptr = resbuf.rb_base + sizeof (ctf_header_t);
670
671
compress_start(&resbuf);
672
(void) compress_buffer(buf->ctb_base, buf->ctb_ptr - buf->ctb_base,
673
&resbuf);
674
compress_flush(&resbuf, Z_FULL_FLUSH);
675
(void) strtab_write(&buf->ctb_strtab, compress_buffer, &resbuf);
676
compress_end(&resbuf);
677
678
*resszp = (resbuf.rb_ptr - resbuf.rb_base);
679
return (resbuf.rb_base);
680
}
681
682
caddr_t
683
ctf_gen(iiburst_t *iiburst, size_t *resszp, int do_compress)
684
{
685
ctf_buf_t *buf = ctf_buf_new();
686
ctf_header_t h;
687
caddr_t outbuf;
688
689
int i;
690
691
target_requires_swap = do_compress & CTF_SWAP_BYTES;
692
do_compress &= ~CTF_SWAP_BYTES;
693
694
/*
695
* Prepare the header, and create the CTF output buffers. The data
696
* object section and function section are both lists of 2-byte
697
* integers; we pad these out to the next 4-byte boundary if needed.
698
*/
699
h.cth_magic = CTF_MAGIC;
700
h.cth_version = CTF_VERSION_3;
701
h.cth_flags = do_compress ? CTF_F_COMPRESS : 0;
702
h.cth_parlabel = strtab_insert(&buf->ctb_strtab,
703
iiburst->iib_td->td_parlabel);
704
h.cth_parname = strtab_insert(&buf->ctb_strtab,
705
iiburst->iib_td->td_parname);
706
707
h.cth_lbloff = 0;
708
(void) list_iter(iiburst->iib_td->td_labels, write_label,
709
buf);
710
711
pad_buffer(buf, 2);
712
h.cth_objtoff = ctf_buf_cur(buf);
713
for (i = 0; i < iiburst->iib_nobjts; i++)
714
write_objects(iiburst->iib_objts[i], buf);
715
716
pad_buffer(buf, 2);
717
h.cth_funcoff = ctf_buf_cur(buf);
718
for (i = 0; i < iiburst->iib_nfuncs; i++)
719
write_functions(iiburst->iib_funcs[i], buf);
720
721
pad_buffer(buf, 4);
722
h.cth_typeoff = ctf_buf_cur(buf);
723
(void) list_iter(iiburst->iib_types, write_type, buf);
724
725
debug(2, "CTF wrote %d types\n", list_count(iiburst->iib_types));
726
727
h.cth_stroff = ctf_buf_cur(buf);
728
h.cth_strlen = strtab_size(&buf->ctb_strtab);
729
730
if (target_requires_swap) {
731
SWAP_16(h.cth_preamble.ctp_magic);
732
SWAP_32(h.cth_parlabel);
733
SWAP_32(h.cth_parname);
734
SWAP_32(h.cth_lbloff);
735
SWAP_32(h.cth_objtoff);
736
SWAP_32(h.cth_funcoff);
737
SWAP_32(h.cth_typeoff);
738
SWAP_32(h.cth_stroff);
739
SWAP_32(h.cth_strlen);
740
}
741
742
/*
743
* We only do compression for ctfmerge, as ctfconvert is only
744
* supposed to be used on intermediary build objects. This is
745
* significantly faster.
746
*/
747
if (do_compress)
748
outbuf = write_compressed_buffer(&h, buf, resszp);
749
else
750
outbuf = write_buffer(&h, buf, resszp);
751
752
ctf_buf_free(buf);
753
return (outbuf);
754
}
755
756
static void
757
get_ctt_info(ctf_header_t *h, void *v, uint_t *kind, uint_t *vlen, int *isroot)
758
{
759
if (h->cth_version == CTF_VERSION_2) {
760
struct ctf_type_v2 *ctt = v;
761
762
*kind = CTF_V2_INFO_KIND(ctt->ctt_info);
763
*vlen = CTF_V2_INFO_VLEN(ctt->ctt_info);
764
*isroot = CTF_V2_INFO_ISROOT(ctt->ctt_info);
765
} else {
766
struct ctf_type_v3 *ctt = v;
767
768
*kind = CTF_V3_INFO_KIND(ctt->ctt_info);
769
*vlen = CTF_V3_INFO_VLEN(ctt->ctt_info);
770
*isroot = CTF_V3_INFO_ISROOT(ctt->ctt_info);
771
}
772
}
773
774
static void
775
get_ctt_size(ctf_header_t *h, void *v, size_t *sizep, size_t *incrementp)
776
{
777
if (h->cth_version == CTF_VERSION_2) {
778
struct ctf_type_v2 *ctt = v;
779
780
if (ctt->ctt_size == CTF_V2_LSIZE_SENT) {
781
*sizep = (size_t)CTF_TYPE_LSIZE(ctt);
782
*incrementp = sizeof (struct ctf_type_v2);
783
} else {
784
*sizep = ctt->ctt_size;
785
*incrementp = sizeof (struct ctf_stype_v2);
786
}
787
} else {
788
struct ctf_type_v3 *ctt = v;
789
790
if (ctt->ctt_size == CTF_V3_LSIZE_SENT) {
791
*sizep = (size_t)CTF_TYPE_LSIZE(ctt);
792
*incrementp = sizeof (struct ctf_type_v3);
793
} else {
794
*sizep = ctt->ctt_size;
795
*incrementp = sizeof (struct ctf_stype_v3);
796
}
797
}
798
}
799
800
static int
801
count_types(ctf_header_t *h, caddr_t data)
802
{
803
caddr_t dptr = data + h->cth_typeoff;
804
uint_t version = h->cth_version;
805
size_t idwidth;
806
int count = 0;
807
808
idwidth = version == CTF_VERSION_2 ? 2 : 4;
809
dptr = data + h->cth_typeoff;
810
while (dptr < data + h->cth_stroff) {
811
void *v = (void *) dptr;
812
size_t size, increment;
813
uint_t vlen, kind;
814
int isroot;
815
816
get_ctt_info(h, v, &kind, &vlen, &isroot);
817
get_ctt_size(h, v, &size, &increment);
818
819
switch (kind) {
820
case CTF_K_INTEGER:
821
case CTF_K_FLOAT:
822
dptr += 4;
823
break;
824
case CTF_K_POINTER:
825
case CTF_K_FORWARD:
826
case CTF_K_TYPEDEF:
827
case CTF_K_VOLATILE:
828
case CTF_K_CONST:
829
case CTF_K_RESTRICT:
830
case CTF_K_FUNCTION:
831
dptr += idwidth * vlen;
832
break;
833
case CTF_K_ARRAY:
834
if (version == CTF_VERSION_2)
835
dptr += sizeof (struct ctf_array_v2);
836
else
837
dptr += sizeof (struct ctf_array_v3);
838
break;
839
case CTF_K_STRUCT:
840
case CTF_K_UNION:
841
if (version == CTF_VERSION_2) {
842
if (size < CTF_V2_LSTRUCT_THRESH)
843
dptr += sizeof (struct ctf_member_v2) *
844
vlen;
845
else
846
dptr += sizeof (struct ctf_lmember_v2) *
847
vlen;
848
} else {
849
if (size < CTF_V3_LSTRUCT_THRESH)
850
dptr += sizeof (struct ctf_member_v3) *
851
vlen;
852
else
853
dptr += sizeof (struct ctf_lmember_v3) *
854
vlen;
855
}
856
break;
857
case CTF_K_ENUM:
858
dptr += sizeof (ctf_enum_t) * vlen;
859
break;
860
case CTF_K_UNKNOWN:
861
break;
862
default:
863
parseterminate("Unknown CTF type %d (#%d) at %#x",
864
kind, count, dptr - data);
865
}
866
867
dptr += increment;
868
count++;
869
}
870
871
debug(3, "CTF read %d types\n", count);
872
873
return (count);
874
}
875
876
/*
877
* Resurrect the labels stored in the CTF data, returning the index associated
878
* with a label provided by the caller. There are several cases, outlined
879
* below. Note that, given two labels, the one associated with the lesser type
880
* index is considered to be older than the other.
881
*
882
* 1. matchlbl == NULL - return the index of the most recent label.
883
* 2. matchlbl == "BASE" - return the index of the oldest label.
884
* 3. matchlbl != NULL, but doesn't match any labels in the section - warn
885
* the user, and proceed as if matchlbl == "BASE" (for safety).
886
* 4. matchlbl != NULL, and matches one of the labels in the section - return
887
* the type index associated with the label.
888
*/
889
static int
890
resurrect_labels(ctf_header_t *h, tdata_t *td, caddr_t ctfdata, char *matchlbl)
891
{
892
caddr_t buf = ctfdata + h->cth_lbloff;
893
caddr_t sbuf = ctfdata + h->cth_stroff;
894
size_t bufsz = h->cth_objtoff - h->cth_lbloff;
895
int lastidx = 0, baseidx = -1;
896
char *baselabel = NULL;
897
ctf_lblent_t *ctl;
898
void *v = (void *) buf;
899
900
for (ctl = v; (caddr_t)ctl < buf + bufsz; ctl++) {
901
char *label = sbuf + ctl->ctl_label;
902
903
lastidx = ctl->ctl_typeidx;
904
905
debug(3, "Resurrected label %s type idx %d\n", label, lastidx);
906
907
tdata_label_add(td, label, lastidx);
908
909
if (baseidx == -1) {
910
baseidx = lastidx;
911
baselabel = label;
912
if (matchlbl != NULL && streq(matchlbl, "BASE"))
913
return (lastidx);
914
}
915
916
if (matchlbl != NULL && streq(label, matchlbl))
917
return (lastidx);
918
}
919
920
if (matchlbl != NULL) {
921
/* User provided a label that didn't match */
922
warning("%s: Cannot find label `%s' - using base (%s)\n",
923
curfile, matchlbl, (baselabel ? baselabel : "NONE"));
924
925
tdata_label_free(td);
926
tdata_label_add(td, baselabel, baseidx);
927
928
return (baseidx);
929
}
930
931
return (lastidx);
932
}
933
934
static void
935
resurrect_objects(ctf_header_t *h, tdata_t *td, tdesc_t **tdarr, int tdsize,
936
caddr_t ctfdata, symit_data_t *si)
937
{
938
caddr_t buf = ctfdata + h->cth_objtoff;
939
size_t bufsz = h->cth_funcoff - h->cth_objtoff;
940
caddr_t dptr;
941
size_t idwidth;
942
943
idwidth = h->cth_version == CTF_VERSION_2 ? 2 : 4;
944
945
symit_reset(si);
946
for (dptr = buf; dptr < buf + bufsz; dptr += idwidth) {
947
uint32_t id = 0;
948
949
memcpy(&id, (void *) dptr, idwidth);
950
iidesc_t *ii;
951
GElf_Sym *sym;
952
953
if (!(sym = symit_next(si, STT_OBJECT)) && id != 0) {
954
parseterminate(
955
"Unexpected end of object symbols at %x of %x",
956
dptr - buf, bufsz);
957
}
958
959
if (id == 0) {
960
debug(3, "Skipping null object\n");
961
continue;
962
} else if (id >= (uint_t)tdsize) {
963
parseterminate("Reference to invalid type %d", id);
964
}
965
966
ii = iidesc_new(symit_name(si));
967
ii->ii_dtype = tdarr[id];
968
if (GELF_ST_BIND(sym->st_info) == STB_LOCAL) {
969
ii->ii_type = II_SVAR;
970
ii->ii_owner = xstrdup(symit_curfile(si));
971
} else
972
ii->ii_type = II_GVAR;
973
hash_add(td->td_iihash, ii);
974
975
debug(3, "Resurrected %s object %s (%d) from %s\n",
976
(ii->ii_type == II_GVAR ? "global" : "static"),
977
ii->ii_name, id, (ii->ii_owner ? ii->ii_owner : "(none)"));
978
}
979
}
980
981
static void
982
resurrect_functions(ctf_header_t *h, tdata_t *td, tdesc_t **tdarr, int tdsize,
983
caddr_t ctfdata, symit_data_t *si)
984
{
985
caddr_t buf = ctfdata + h->cth_funcoff;
986
size_t bufsz = h->cth_typeoff - h->cth_funcoff;
987
size_t idwidth;
988
caddr_t dptr = buf;
989
iidesc_t *ii;
990
GElf_Sym *sym;
991
int i;
992
993
idwidth = h->cth_version == CTF_VERSION_2 ? 2 : 4;
994
995
symit_reset(si);
996
while (dptr < buf + bufsz) {
997
uint32_t id, info, retid;
998
999
info = 0;
1000
memcpy(&info, (void *) dptr, idwidth);
1001
dptr += idwidth;
1002
1003
if (!(sym = symit_next(si, STT_FUNC)) && info != 0)
1004
parseterminate("Unexpected end of function symbols");
1005
1006
if (info == 0) {
1007
debug(3, "Skipping null function (%s)\n",
1008
symit_name(si));
1009
continue;
1010
}
1011
1012
retid = 0;
1013
memcpy(&retid, (void *) dptr, idwidth);
1014
dptr += idwidth;
1015
1016
if (retid >= (uint_t)tdsize)
1017
parseterminate("Reference to invalid type %d", retid);
1018
1019
ii = iidesc_new(symit_name(si));
1020
ii->ii_dtype = tdarr[retid];
1021
if (GELF_ST_BIND(sym->st_info) == STB_LOCAL) {
1022
ii->ii_type = II_SFUN;
1023
ii->ii_owner = xstrdup(symit_curfile(si));
1024
} else
1025
ii->ii_type = II_GFUN;
1026
if (h->cth_version == CTF_VERSION_2)
1027
ii->ii_nargs = CTF_V2_INFO_VLEN(info);
1028
else
1029
ii->ii_nargs = CTF_V3_INFO_VLEN(info);
1030
if (ii->ii_nargs)
1031
ii->ii_args =
1032
xmalloc(sizeof (tdesc_t *) * ii->ii_nargs);
1033
1034
for (i = 0; i < ii->ii_nargs; i++, dptr += idwidth) {
1035
id = 0;
1036
memcpy(&id, (void *) dptr, idwidth);
1037
if (id >= (uint_t)tdsize)
1038
parseterminate("Reference to invalid type %d",
1039
id);
1040
ii->ii_args[i] = tdarr[id];
1041
}
1042
1043
if (ii->ii_nargs && ii->ii_args[ii->ii_nargs - 1] == NULL) {
1044
ii->ii_nargs--;
1045
ii->ii_vargs = 1;
1046
}
1047
1048
hash_add(td->td_iihash, ii);
1049
1050
debug(3, "Resurrected %s function %s (%d, %d args)\n",
1051
(ii->ii_type == II_GFUN ? "global" : "static"),
1052
ii->ii_name, retid, ii->ii_nargs);
1053
}
1054
}
1055
1056
static void
1057
resurrect_types(ctf_header_t *h, tdata_t *td, tdesc_t **tdarr, int tdsize,
1058
caddr_t ctfdata, int maxid)
1059
{
1060
caddr_t buf = ctfdata + h->cth_typeoff;
1061
size_t bufsz = h->cth_stroff - h->cth_typeoff;
1062
caddr_t sbuf = ctfdata + h->cth_stroff;
1063
caddr_t dptr = buf;
1064
tdesc_t *tdp;
1065
uint_t data;
1066
uint_t encoding;
1067
size_t idwidth, size, increment;
1068
int tcnt;
1069
int iicnt = 0;
1070
tid_t tid, argid;
1071
int isroot, kind, vlen;
1072
int i, version;
1073
1074
elist_t **epp;
1075
mlist_t **mpp;
1076
intr_t *ip;
1077
1078
version = h->cth_version;
1079
idwidth = version == CTF_VERSION_2 ? 2 : 4;
1080
1081
/*
1082
* A maxid of zero indicates a request to resurrect all types, so reset
1083
* maxid to the maximum type id.
1084
*/
1085
if (maxid == 0) {
1086
maxid = version == CTF_VERSION_2 ?
1087
CTF_V2_MAX_TYPE : CTF_V3_MAX_TYPE;
1088
}
1089
1090
for (dptr = buf, tcnt = 0, tid = 1; dptr < buf + bufsz; tcnt++, tid++) {
1091
ctf_enum_t *cte;
1092
uint_t name, type;
1093
void *v;
1094
1095
if (tid > maxid)
1096
break;
1097
1098
if (tid >= tdsize)
1099
parseterminate("Reference to invalid type %d", tid);
1100
1101
get_ctt_info(h, dptr, &kind, &vlen, &isroot);
1102
get_ctt_size(h, dptr, &size, &increment);
1103
if (version == CTF_VERSION_2) {
1104
struct ctf_type_v2 *ctt = (void *) dptr;
1105
1106
name = ctt->ctt_name;
1107
type = ctt->ctt_type;
1108
} else {
1109
struct ctf_type_v3 *ctt = (void *) dptr;
1110
1111
name = ctt->ctt_name;
1112
type = ctt->ctt_type;
1113
}
1114
dptr += increment;
1115
1116
tdp = tdarr[tid];
1117
1118
if (CTF_NAME_STID(name) != CTF_STRTAB_0)
1119
parseterminate(
1120
"Unable to cope with non-zero strtab id");
1121
if (CTF_NAME_OFFSET(name) != 0) {
1122
tdp->t_name = xstrdup(sbuf + CTF_NAME_OFFSET(name));
1123
} else
1124
tdp->t_name = NULL;
1125
1126
switch (kind) {
1127
case CTF_K_INTEGER:
1128
tdp->t_type = INTRINSIC;
1129
tdp->t_size = size;
1130
1131
v = (void *) dptr;
1132
data = *((uint_t *)v);
1133
dptr += sizeof (uint_t);
1134
encoding = CTF_INT_ENCODING(data);
1135
1136
ip = xmalloc(sizeof (intr_t));
1137
ip->intr_type = INTR_INT;
1138
ip->intr_signed = (encoding & CTF_INT_SIGNED) ? 1 : 0;
1139
1140
if (encoding & CTF_INT_CHAR)
1141
ip->intr_iformat = 'c';
1142
else if (encoding & CTF_INT_BOOL)
1143
ip->intr_iformat = 'b';
1144
else if (encoding & CTF_INT_VARARGS)
1145
ip->intr_iformat = 'v';
1146
else
1147
ip->intr_iformat = '\0';
1148
1149
ip->intr_offset = CTF_INT_OFFSET(data);
1150
ip->intr_nbits = CTF_INT_BITS(data);
1151
tdp->t_intr = ip;
1152
break;
1153
1154
case CTF_K_FLOAT:
1155
tdp->t_type = INTRINSIC;
1156
tdp->t_size = size;
1157
1158
v = (void *) dptr;
1159
data = *((uint_t *)v);
1160
dptr += sizeof (uint_t);
1161
1162
ip = xcalloc(sizeof (intr_t));
1163
ip->intr_type = INTR_REAL;
1164
ip->intr_fformat = CTF_FP_ENCODING(data);
1165
ip->intr_offset = CTF_FP_OFFSET(data);
1166
ip->intr_nbits = CTF_FP_BITS(data);
1167
tdp->t_intr = ip;
1168
break;
1169
1170
case CTF_K_POINTER:
1171
tdp->t_type = POINTER;
1172
tdp->t_tdesc = tdarr[type];
1173
break;
1174
1175
case CTF_K_ARRAY: {
1176
uint_t contents, index, nelems;
1177
1178
tdp->t_type = ARRAY;
1179
tdp->t_size = size;
1180
1181
if (version == CTF_VERSION_2) {
1182
struct ctf_array_v2 *cta = (void *) dptr;
1183
contents = cta->cta_contents;
1184
index = cta->cta_index;
1185
nelems = cta->cta_nelems;
1186
dptr += sizeof (*cta);
1187
} else {
1188
struct ctf_array_v3 *cta = (void *) dptr;
1189
contents = cta->cta_contents;
1190
index = cta->cta_index;
1191
nelems = cta->cta_nelems;
1192
dptr += sizeof (*cta);
1193
}
1194
1195
tdp->t_ardef = xmalloc(sizeof (ardef_t));
1196
tdp->t_ardef->ad_contents = tdarr[contents];
1197
tdp->t_ardef->ad_idxtype = tdarr[index];
1198
tdp->t_ardef->ad_nelems = nelems;
1199
break;
1200
}
1201
1202
case CTF_K_STRUCT:
1203
case CTF_K_UNION: {
1204
tdp->t_type = (kind == CTF_K_STRUCT ? STRUCT : UNION);
1205
tdp->t_size = size;
1206
1207
if (version == CTF_VERSION_2) {
1208
if (size < CTF_V2_LSTRUCT_THRESH) {
1209
for (i = 0, mpp = &tdp->t_members; i < vlen;
1210
i++, mpp = &((*mpp)->ml_next)) {
1211
v = (void *) dptr;
1212
struct ctf_member_v2 *ctm = v;
1213
dptr += sizeof (struct ctf_member_v2);
1214
1215
*mpp = xmalloc(sizeof (mlist_t));
1216
(*mpp)->ml_name = xstrdup(sbuf +
1217
ctm->ctm_name);
1218
(*mpp)->ml_type = tdarr[ctm->ctm_type];
1219
(*mpp)->ml_offset = ctm->ctm_offset;
1220
(*mpp)->ml_size = 0;
1221
}
1222
} else {
1223
for (i = 0, mpp = &tdp->t_members; i < vlen;
1224
i++, mpp = &((*mpp)->ml_next)) {
1225
v = (void *) dptr;
1226
struct ctf_lmember_v2 *ctlm = v;
1227
dptr += sizeof (struct ctf_lmember_v2);
1228
1229
*mpp = xmalloc(sizeof (mlist_t));
1230
(*mpp)->ml_name = xstrdup(sbuf +
1231
ctlm->ctlm_name);
1232
(*mpp)->ml_type =
1233
tdarr[ctlm->ctlm_type];
1234
(*mpp)->ml_offset =
1235
(int)CTF_LMEM_OFFSET(ctlm);
1236
(*mpp)->ml_size = 0;
1237
}
1238
}
1239
} else {
1240
if (size < CTF_V3_LSTRUCT_THRESH) {
1241
for (i = 0, mpp = &tdp->t_members; i < vlen;
1242
i++, mpp = &((*mpp)->ml_next)) {
1243
v = (void *) dptr;
1244
struct ctf_member_v3 *ctm = v;
1245
dptr += sizeof (struct ctf_member_v3);
1246
1247
*mpp = xmalloc(sizeof (mlist_t));
1248
(*mpp)->ml_name = xstrdup(sbuf +
1249
ctm->ctm_name);
1250
(*mpp)->ml_type = tdarr[ctm->ctm_type];
1251
(*mpp)->ml_offset = ctm->ctm_offset;
1252
(*mpp)->ml_size = 0;
1253
}
1254
} else {
1255
for (i = 0, mpp = &tdp->t_members; i < vlen;
1256
i++, mpp = &((*mpp)->ml_next)) {
1257
v = (void *) dptr;
1258
struct ctf_lmember_v3 *ctlm = v;
1259
dptr += sizeof (struct ctf_lmember_v3);
1260
1261
*mpp = xmalloc(sizeof (mlist_t));
1262
(*mpp)->ml_name = xstrdup(sbuf +
1263
ctlm->ctlm_name);
1264
(*mpp)->ml_type =
1265
tdarr[ctlm->ctlm_type];
1266
(*mpp)->ml_offset =
1267
(int)CTF_LMEM_OFFSET(ctlm);
1268
(*mpp)->ml_size = 0;
1269
}
1270
}
1271
}
1272
1273
*mpp = NULL;
1274
break;
1275
}
1276
1277
case CTF_K_ENUM:
1278
tdp->t_type = ENUM;
1279
tdp->t_size = size;
1280
1281
for (i = 0, epp = &tdp->t_emem; i < vlen;
1282
i++, epp = &((*epp)->el_next)) {
1283
v = (void *) dptr;
1284
cte = v;
1285
dptr += sizeof (ctf_enum_t);
1286
1287
*epp = xmalloc(sizeof (elist_t));
1288
(*epp)->el_name = xstrdup(sbuf + cte->cte_name);
1289
(*epp)->el_number = cte->cte_value;
1290
}
1291
*epp = NULL;
1292
break;
1293
1294
case CTF_K_FORWARD:
1295
tdp->t_type = FORWARD;
1296
list_add(&td->td_fwdlist, tdp);
1297
break;
1298
1299
case CTF_K_TYPEDEF:
1300
tdp->t_type = TYPEDEF;
1301
tdp->t_tdesc = tdarr[type];
1302
break;
1303
1304
case CTF_K_VOLATILE:
1305
tdp->t_type = VOLATILE;
1306
tdp->t_tdesc = tdarr[type];
1307
break;
1308
1309
case CTF_K_CONST:
1310
tdp->t_type = CONST;
1311
tdp->t_tdesc = tdarr[type];
1312
break;
1313
1314
case CTF_K_FUNCTION:
1315
tdp->t_type = FUNCTION;
1316
tdp->t_fndef = xcalloc(sizeof (fndef_t));
1317
tdp->t_fndef->fn_ret = tdarr[type];
1318
1319
v = (void *) (dptr + (idwidth * (vlen - 1)));
1320
if (vlen > 0 && *(uint_t *)v == 0)
1321
tdp->t_fndef->fn_vargs = 1;
1322
1323
tdp->t_fndef->fn_nargs = vlen - tdp->t_fndef->fn_vargs;
1324
tdp->t_fndef->fn_args = xcalloc(sizeof (tdesc_t) *
1325
vlen - tdp->t_fndef->fn_vargs);
1326
1327
for (i = 0; i < vlen; i++) {
1328
v = (void *) dptr;
1329
memcpy(&argid, v, idwidth);
1330
dptr += idwidth;
1331
1332
if (argid != 0)
1333
tdp->t_fndef->fn_args[i] = tdarr[argid];
1334
}
1335
1336
dptr = (caddr_t) roundup2((uintptr_t) dptr, 4);
1337
break;
1338
1339
case CTF_K_RESTRICT:
1340
tdp->t_type = RESTRICT;
1341
tdp->t_tdesc = tdarr[type];
1342
break;
1343
1344
case CTF_K_UNKNOWN:
1345
break;
1346
1347
default:
1348
warning("Can't parse unknown CTF type %d\n", kind);
1349
}
1350
1351
if (isroot) {
1352
iidesc_t *ii = iidesc_new(tdp->t_name);
1353
if (tdp->t_type == STRUCT || tdp->t_type == UNION ||
1354
tdp->t_type == ENUM)
1355
ii->ii_type = II_SOU;
1356
else
1357
ii->ii_type = II_TYPE;
1358
ii->ii_dtype = tdp;
1359
hash_add(td->td_iihash, ii);
1360
1361
iicnt++;
1362
}
1363
1364
debug(3, "Resurrected %d %stype %s (%d)\n", tdp->t_type,
1365
(isroot ? "root " : ""), tdesc_name(tdp), tdp->t_id);
1366
}
1367
1368
debug(3, "Resurrected %d types (%d were roots)\n", tcnt, iicnt);
1369
}
1370
1371
/*
1372
* For lack of other inspiration, we're going to take the boring route. We
1373
* count the number of types. This lets us malloc that many tdesc structs
1374
* before we start filling them in. This has the advantage of allowing us to
1375
* avoid a merge-esque remap step.
1376
*/
1377
static tdata_t *
1378
ctf_parse(ctf_header_t *h, caddr_t buf, symit_data_t *si, char *label)
1379
{
1380
tdata_t *td = tdata_new();
1381
tdesc_t **tdarr;
1382
int ntypes = count_types(h, buf);
1383
int idx, i;
1384
1385
/* shudder */
1386
tdarr = xcalloc(sizeof (tdesc_t *) * (ntypes + 1));
1387
tdarr[0] = NULL;
1388
for (i = 1; i <= ntypes; i++) {
1389
tdarr[i] = xcalloc(sizeof (tdesc_t));
1390
tdarr[i]->t_id = i;
1391
}
1392
1393
td->td_parlabel = xstrdup(buf + h->cth_stroff + h->cth_parlabel);
1394
1395
/* we have the technology - we can rebuild them */
1396
idx = resurrect_labels(h, td, buf, label);
1397
1398
resurrect_objects(h, td, tdarr, ntypes + 1, buf, si);
1399
resurrect_functions(h, td, tdarr, ntypes + 1, buf, si);
1400
resurrect_types(h, td, tdarr, ntypes + 1, buf, idx);
1401
1402
free(tdarr);
1403
1404
td->td_nextid = ntypes + 1;
1405
1406
return (td);
1407
}
1408
1409
static size_t
1410
decompress_ctf(caddr_t cbuf, size_t cbufsz, caddr_t dbuf, size_t dbufsz)
1411
{
1412
z_stream zstr;
1413
int rc;
1414
1415
zstr.zalloc = (alloc_func)0;
1416
zstr.zfree = (free_func)0;
1417
zstr.opaque = (voidpf)0;
1418
1419
zstr.next_in = (Bytef *)cbuf;
1420
zstr.avail_in = cbufsz;
1421
zstr.next_out = (Bytef *)dbuf;
1422
zstr.avail_out = dbufsz;
1423
1424
if ((rc = inflateInit(&zstr)) != Z_OK ||
1425
(rc = inflate(&zstr, Z_NO_FLUSH)) != Z_STREAM_END ||
1426
(rc = inflateEnd(&zstr)) != Z_OK) {
1427
warning("CTF decompress zlib error %s\n", zError(rc));
1428
return (0);
1429
}
1430
1431
debug(3, "reflated %lu bytes to %lu, pointer at %d\n",
1432
zstr.total_in, zstr.total_out, (caddr_t)zstr.next_in - cbuf);
1433
1434
return (zstr.total_out);
1435
}
1436
1437
/*
1438
* Reconstruct the type tree from a given buffer of CTF data. Only the types
1439
* up to the type associated with the provided label, inclusive, will be
1440
* reconstructed. If a NULL label is provided, all types will be reconstructed.
1441
*
1442
* This function won't work on files that have been uniquified.
1443
*/
1444
tdata_t *
1445
ctf_load(char *file, caddr_t buf, size_t bufsz, symit_data_t *si, char *label)
1446
{
1447
ctf_header_t *h;
1448
caddr_t ctfdata;
1449
size_t ctfdatasz;
1450
tdata_t *td;
1451
1452
curfile = file;
1453
1454
if (bufsz < sizeof (ctf_header_t))
1455
parseterminate("Corrupt CTF - short header");
1456
1457
void *v = (void *) buf;
1458
h = v;
1459
buf += sizeof (ctf_header_t);
1460
bufsz -= sizeof (ctf_header_t);
1461
1462
if (h->cth_magic != CTF_MAGIC)
1463
parseterminate("Corrupt CTF - bad magic 0x%x", h->cth_magic);
1464
1465
if (h->cth_version != CTF_VERSION_2 && h->cth_version != CTF_VERSION_3)
1466
parseterminate("Unknown CTF version %d", h->cth_version);
1467
1468
ctfdatasz = h->cth_stroff + h->cth_strlen;
1469
if (h->cth_flags & CTF_F_COMPRESS) {
1470
size_t actual;
1471
1472
ctfdata = xmalloc(ctfdatasz);
1473
if ((actual = decompress_ctf(buf, bufsz, ctfdata, ctfdatasz)) !=
1474
ctfdatasz) {
1475
parseterminate("Corrupt CTF - short decompression "
1476
"(was %d, expecting %d)", actual, ctfdatasz);
1477
}
1478
} else {
1479
ctfdata = buf;
1480
ctfdatasz = bufsz;
1481
}
1482
1483
td = ctf_parse(h, ctfdata, si, label);
1484
1485
if (h->cth_flags & CTF_F_COMPRESS)
1486
free(ctfdata);
1487
1488
curfile = NULL;
1489
1490
return (td);
1491
}
1492
1493