Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/cddl/contrib/opensolaris/tools/ctf/cvt/ctfmerge.c
39586 views
1
/*
2
* CDDL HEADER START
3
*
4
* The contents of this file are subject to the terms of the
5
* Common Development and Distribution License (the "License").
6
* You may not use this file except in compliance with the License.
7
*
8
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9
* or http://www.opensolaris.org/os/licensing.
10
* See the License for the specific language governing permissions
11
* and limitations under the License.
12
*
13
* When distributing Covered Code, include this CDDL HEADER in each
14
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15
* If applicable, add the following below this CDDL HEADER, with the
16
* fields enclosed by brackets "[]" replaced with your own identifying
17
* information: Portions Copyright [yyyy] [name of copyright owner]
18
*
19
* CDDL HEADER END
20
*/
21
/*
22
* Copyright 2008 Sun Microsystems, Inc. All rights reserved.
23
* Use is subject to license terms.
24
*/
25
26
#pragma ident "%Z%%M% %I% %E% SMI"
27
28
/*
29
* Given several files containing CTF data, merge and uniquify that data into
30
* a single CTF section in an output file.
31
*
32
* Merges can proceed independently. As such, we perform the merges in parallel
33
* using a worker thread model. A given glob of CTF data (either all of the CTF
34
* data from a single input file, or the result of one or more merges) can only
35
* be involved in a single merge at any given time, so the process decreases in
36
* parallelism, especially towards the end, as more and more files are
37
* consolidated, finally resulting in a single merge of two large CTF graphs.
38
* Unfortunately, the last merge is also the slowest, as the two graphs being
39
* merged are each the product of merges of half of the input files.
40
*
41
* The algorithm consists of two phases, described in detail below. The first
42
* phase entails the merging of CTF data in groups of eight. The second phase
43
* takes the results of Phase I, and merges them two at a time. This disparity
44
* is due to an observation that the merge time increases at least quadratically
45
* with the size of the CTF data being merged. As such, merges of CTF graphs
46
* newly read from input files are much faster than merges of CTF graphs that
47
* are themselves the results of prior merges.
48
*
49
* A further complication is the need to ensure the repeatability of CTF merges.
50
* That is, a merge should produce the same output every time, given the same
51
* input. In both phases, this consistency requirement is met by imposing an
52
* ordering on the merge process, thus ensuring that a given set of input files
53
* are merged in the same order every time.
54
*
55
* Phase I
56
*
57
* The main thread reads the input files one by one, transforming the CTF
58
* data they contain into tdata structures. When a given file has been read
59
* and parsed, it is placed on the work queue for retrieval by worker threads.
60
*
61
* Central to Phase I is the Work In Progress (wip) array, which is used to
62
* merge batches of files in a predictable order. Files are read by the main
63
* thread, and are merged into wip array elements in round-robin order. When
64
* the number of files merged into a given array slot equals the batch size,
65
* the merged CTF graph in that array is added to the done slot in order by
66
* array slot.
67
*
68
* For example, consider a case where we have five input files, a batch size
69
* of two, a wip array size of two, and two worker threads (T1 and T2).
70
*
71
* 1. The wip array elements are assigned initial batch numbers 0 and 1.
72
* 2. T1 reads an input file from the input queue (wq_queue). This is the
73
* first input file, so it is placed into wip[0]. The second file is
74
* similarly read and placed into wip[1]. The wip array slots now contain
75
* one file each (wip_nmerged == 1).
76
* 3. T1 reads the third input file, which it merges into wip[0]. The
77
* number of files in wip[0] is equal to the batch size.
78
* 4. T2 reads the fourth input file, which it merges into wip[1]. wip[1]
79
* is now full too.
80
* 5. T2 attempts to place the contents of wip[1] on the done queue
81
* (wq_done_queue), but it can't, since the batch ID for wip[1] is 1.
82
* Batch 0 needs to be on the done queue before batch 1 can be added, so
83
* T2 blocks on wip[1]'s cv.
84
* 6. T1 attempts to place the contents of wip[0] on the done queue, and
85
* succeeds, updating wq_lastdonebatch to 0. It clears wip[0], and sets
86
* its batch ID to 2. T1 then signals wip[1]'s cv to awaken T2.
87
* 7. T2 wakes up, notices that wq_lastdonebatch is 0, which means that
88
* batch 1 can now be added. It adds wip[1] to the done queue, clears
89
* wip[1], and sets its batch ID to 3. It signals wip[0]'s cv, and
90
* restarts.
91
*
92
* The above process continues until all input files have been consumed. At
93
* this point, a pair of barriers are used to allow a single thread to move
94
* any partial batches from the wip array to the done array in batch ID order.
95
* When this is complete, wq_done_queue is moved to wq_queue, and Phase II
96
* begins.
97
*
98
* Locking Semantics (Phase I)
99
*
100
* The input queue (wq_queue) and the done queue (wq_done_queue) are
101
* protected by separate mutexes - wq_queue_lock and wq_done_queue. wip
102
* array slots are protected by their own mutexes, which must be grabbed
103
* before releasing the input queue lock. The wip array lock is dropped
104
* when the thread restarts the loop. If the array slot was full, the
105
* array lock will be held while the slot contents are added to the done
106
* queue. The done queue lock is used to protect the wip slot cv's.
107
*
108
* The pow number is protected by the queue lock. The master batch ID
109
* and last completed batch (wq_lastdonebatch) counters are protected *in
110
* Phase I* by the done queue lock.
111
*
112
* Phase II
113
*
114
* When Phase II begins, the queue consists of the merged batches from the
115
* first phase. Assume we have five batches:
116
*
117
* Q: a b c d e
118
*
119
* Using the same batch ID mechanism we used in Phase I, but without the wip
120
* array, worker threads remove two entries at a time from the beginning of
121
* the queue. These two entries are merged, and are added back to the tail
122
* of the queue, as follows:
123
*
124
* Q: a b c d e # start
125
* Q: c d e ab # a, b removed, merged, added to end
126
* Q: e ab cd # c, d removed, merged, added to end
127
* Q: cd eab # e, ab removed, merged, added to end
128
* Q: cdeab # cd, eab removed, merged, added to end
129
*
130
* When one entry remains on the queue, with no merges outstanding, Phase II
131
* finishes. We pre-determine the stopping point by pre-calculating the
132
* number of nodes that will appear on the list. In the example above, the
133
* number (wq_ninqueue) is 9. When ninqueue is 1, we conclude Phase II by
134
* signaling the main thread via wq_done_cv.
135
*
136
* Locking Semantics (Phase II)
137
*
138
* The queue (wq_queue), ninqueue, and the master batch ID and last
139
* completed batch counters are protected by wq_queue_lock. The done
140
* queue and corresponding lock are unused in Phase II as is the wip array.
141
*
142
* Uniquification
143
*
144
* We want the CTF data that goes into a given module to be as small as
145
* possible. For example, we don't want it to contain any type data that may
146
* be present in another common module. As such, after creating the master
147
* tdata_t for a given module, we can, if requested by the user, uniquify it
148
* against the tdata_t from another module (genunix in the case of the SunOS
149
* kernel). We perform a merge between the tdata_t for this module and the
150
* tdata_t from genunix. Nodes found in this module that are not present in
151
* genunix are added to a third tdata_t - the uniquified tdata_t.
152
*
153
* Additive Merges
154
*
155
* In some cases, for example if we are issuing a new version of a common
156
* module in a patch, we need to make sure that the CTF data already present
157
* in that module does not change. Changes to this data would void the CTF
158
* data in any module that uniquified against the common module. To preserve
159
* the existing data, we can perform what is known as an additive merge. In
160
* this case, a final uniquification is performed against the CTF data in the
161
* previous version of the module. The result will be the placement of new
162
* and changed data after the existing data, thus preserving the existing type
163
* ID space.
164
*
165
* Saving the result
166
*
167
* When the merges are complete, the resulting tdata_t is placed into the
168
* output file, replacing the .SUNW_ctf section (if any) already in that file.
169
*
170
* The person who changes the merging thread code in this file without updating
171
* this comment will not live to see the stock hit five.
172
*/
173
174
#include <stdio.h>
175
#include <stdlib.h>
176
#include <unistd.h>
177
#include <pthread.h>
178
#include <assert.h>
179
#ifdef illumos
180
#include <synch.h>
181
#endif
182
#include <signal.h>
183
#include <libgen.h>
184
#include <string.h>
185
#include <errno.h>
186
#ifdef illumos
187
#include <alloca.h>
188
#endif
189
#include <sys/param.h>
190
#include <sys/types.h>
191
#include <sys/mman.h>
192
#ifdef illumos
193
#include <sys/sysconf.h>
194
#endif
195
196
#include "ctf_headers.h"
197
#include "ctftools.h"
198
#include "ctfmerge.h"
199
#include "traverse.h"
200
#include "memory.h"
201
#include "fifo.h"
202
#include "barrier.h"
203
204
#pragma init(bigheap)
205
206
#define MERGE_PHASE1_BATCH_SIZE 8
207
#define MERGE_PHASE1_MAX_SLOTS 5
208
#define MERGE_INPUT_THROTTLE_LEN 10
209
210
const char *progname;
211
static char *outfile = NULL;
212
static char *tmpname = NULL;
213
static int dynsym;
214
int debug_level = DEBUG_LEVEL;
215
static size_t maxpgsize = 0x400000;
216
217
218
void
219
usage(void)
220
{
221
(void) fprintf(stderr,
222
"Usage: %s [-fgstv] -l label | -L labelenv -o outfile file ...\n"
223
" %s [-fgstv] -l label | -L labelenv -o outfile -d uniqfile\n"
224
" %*s [-g] [-D uniqlabel] file ...\n"
225
" %s [-fgstv] -l label | -L labelenv -o outfile -w withfile "
226
"file ...\n"
227
" %s [-g] -c srcfile destfile\n"
228
"\n"
229
" Note: if -L labelenv is specified and labelenv is not set in\n"
230
" the environment, a default value is used.\n",
231
progname, progname, (int)strlen(progname), " ",
232
progname, progname);
233
}
234
235
#ifdef illumos
236
static void
237
bigheap(void)
238
{
239
size_t big, *size;
240
int sizes;
241
struct memcntl_mha mha;
242
243
/*
244
* First, get the available pagesizes.
245
*/
246
if ((sizes = getpagesizes(NULL, 0)) == -1)
247
return;
248
249
if (sizes == 1 || (size = alloca(sizeof (size_t) * sizes)) == NULL)
250
return;
251
252
if (getpagesizes(size, sizes) == -1)
253
return;
254
255
while (size[sizes - 1] > maxpgsize)
256
sizes--;
257
258
/* set big to the largest allowed page size */
259
big = size[sizes - 1];
260
if (big & (big - 1)) {
261
/*
262
* The largest page size is not a power of two for some
263
* inexplicable reason; return.
264
*/
265
return;
266
}
267
268
/*
269
* Now, align our break to the largest page size.
270
*/
271
if (brk((void *)((((uintptr_t)sbrk(0) - 1) & ~(big - 1)) + big)) != 0)
272
return;
273
274
/*
275
* set the preferred page size for the heap
276
*/
277
mha.mha_cmd = MHA_MAPSIZE_BSSBRK;
278
mha.mha_flags = 0;
279
mha.mha_pagesize = big;
280
281
(void) memcntl(NULL, 0, MC_HAT_ADVISE, (caddr_t)&mha, 0, 0);
282
}
283
#endif /* illumos */
284
285
static void
286
finalize_phase_one(workqueue_t *wq)
287
{
288
int startslot, i;
289
290
/*
291
* wip slots are cleared out only when maxbatchsz td's have been merged
292
* into them. We're not guaranteed that the number of files we're
293
* merging is a multiple of maxbatchsz, so there will be some partial
294
* groups in the wip array. Move them to the done queue in batch ID
295
* order, starting with the slot containing the next batch that would
296
* have been placed on the done queue, followed by the others.
297
* One thread will be doing this while the others wait at the barrier
298
* back in worker_thread(), so we don't need to worry about pesky things
299
* like locks.
300
*/
301
302
for (startslot = -1, i = 0; i < wq->wq_nwipslots; i++) {
303
if (wq->wq_wip[i].wip_batchid == wq->wq_lastdonebatch + 1) {
304
startslot = i;
305
break;
306
}
307
}
308
309
assert(startslot != -1);
310
311
for (i = startslot; i < startslot + wq->wq_nwipslots; i++) {
312
int slotnum = i % wq->wq_nwipslots;
313
wip_t *wipslot = &wq->wq_wip[slotnum];
314
315
if (wipslot->wip_td != NULL) {
316
debug(2, "clearing slot %d (%d) (saving %d)\n",
317
slotnum, i, wipslot->wip_nmerged);
318
} else
319
debug(2, "clearing slot %d (%d)\n", slotnum, i);
320
321
if (wipslot->wip_td != NULL) {
322
fifo_add(wq->wq_donequeue, wipslot->wip_td);
323
wq->wq_wip[slotnum].wip_td = NULL;
324
}
325
}
326
327
wq->wq_lastdonebatch = wq->wq_next_batchid++;
328
329
debug(2, "phase one done: donequeue has %d items\n",
330
fifo_len(wq->wq_donequeue));
331
}
332
333
static void
334
init_phase_two(workqueue_t *wq)
335
{
336
int num;
337
338
/*
339
* We're going to continually merge the first two entries on the queue,
340
* placing the result on the end, until there's nothing left to merge.
341
* At that point, everything will have been merged into one. The
342
* initial value of ninqueue needs to be equal to the total number of
343
* entries that will show up on the queue, both at the start of the
344
* phase and as generated by merges during the phase.
345
*/
346
wq->wq_ninqueue = num = fifo_len(wq->wq_donequeue);
347
while (num != 1) {
348
wq->wq_ninqueue += num / 2;
349
num = num / 2 + num % 2;
350
}
351
352
/*
353
* Move the done queue to the work queue. We won't be using the done
354
* queue in phase 2.
355
*/
356
assert(fifo_len(wq->wq_queue) == 0);
357
fifo_free(wq->wq_queue, NULL);
358
wq->wq_queue = wq->wq_donequeue;
359
}
360
361
static void
362
wip_save_work(workqueue_t *wq, wip_t *slot, int slotnum)
363
{
364
pthread_mutex_lock(&wq->wq_donequeue_lock);
365
366
while (wq->wq_lastdonebatch + 1 < slot->wip_batchid)
367
pthread_cond_wait(&slot->wip_cv, &wq->wq_donequeue_lock);
368
assert(wq->wq_lastdonebatch + 1 == slot->wip_batchid);
369
370
fifo_add(wq->wq_donequeue, slot->wip_td);
371
wq->wq_lastdonebatch++;
372
pthread_cond_signal(&wq->wq_wip[(slotnum + 1) %
373
wq->wq_nwipslots].wip_cv);
374
375
/* reset the slot for next use */
376
slot->wip_td = NULL;
377
slot->wip_batchid = wq->wq_next_batchid++;
378
379
pthread_mutex_unlock(&wq->wq_donequeue_lock);
380
}
381
382
static void
383
wip_add_work(wip_t *slot, tdata_t *pow)
384
{
385
if (slot->wip_td == NULL) {
386
slot->wip_td = pow;
387
slot->wip_nmerged = 1;
388
} else {
389
debug(2, "%d: merging %p into %p\n", pthread_self(),
390
(void *)pow, (void *)slot->wip_td);
391
392
merge_into_master(pow, slot->wip_td, NULL, 0);
393
tdata_free(pow);
394
395
slot->wip_nmerged++;
396
}
397
}
398
399
static void
400
worker_runphase1(workqueue_t *wq)
401
{
402
wip_t *wipslot;
403
tdata_t *pow;
404
int wipslotnum, pownum;
405
406
for (;;) {
407
pthread_mutex_lock(&wq->wq_queue_lock);
408
409
while (fifo_empty(wq->wq_queue)) {
410
if (wq->wq_nomorefiles == 1) {
411
pthread_cond_broadcast(&wq->wq_work_avail);
412
pthread_mutex_unlock(&wq->wq_queue_lock);
413
414
/* on to phase 2 ... */
415
return;
416
}
417
418
pthread_cond_wait(&wq->wq_work_avail,
419
&wq->wq_queue_lock);
420
}
421
422
/* there's work to be done! */
423
pow = fifo_remove(wq->wq_queue);
424
pownum = wq->wq_nextpownum++;
425
pthread_cond_broadcast(&wq->wq_work_removed);
426
427
assert(pow != NULL);
428
429
/* merge it into the right slot */
430
wipslotnum = pownum % wq->wq_nwipslots;
431
wipslot = &wq->wq_wip[wipslotnum];
432
433
pthread_mutex_lock(&wipslot->wip_lock);
434
435
pthread_mutex_unlock(&wq->wq_queue_lock);
436
437
wip_add_work(wipslot, pow);
438
439
if (wipslot->wip_nmerged == wq->wq_maxbatchsz)
440
wip_save_work(wq, wipslot, wipslotnum);
441
442
pthread_mutex_unlock(&wipslot->wip_lock);
443
}
444
}
445
446
static void
447
worker_runphase2(workqueue_t *wq)
448
{
449
tdata_t *pow1, *pow2;
450
int batchid;
451
452
for (;;) {
453
pthread_mutex_lock(&wq->wq_queue_lock);
454
455
if (wq->wq_ninqueue == 1) {
456
pthread_cond_broadcast(&wq->wq_work_avail);
457
pthread_mutex_unlock(&wq->wq_queue_lock);
458
459
debug(2, "%d: entering p2 completion barrier\n",
460
pthread_self());
461
if (barrier_wait(&wq->wq_bar1)) {
462
pthread_mutex_lock(&wq->wq_queue_lock);
463
wq->wq_alldone = 1;
464
pthread_cond_signal(&wq->wq_alldone_cv);
465
pthread_mutex_unlock(&wq->wq_queue_lock);
466
}
467
468
return;
469
}
470
471
if (fifo_len(wq->wq_queue) < 2) {
472
pthread_cond_wait(&wq->wq_work_avail,
473
&wq->wq_queue_lock);
474
pthread_mutex_unlock(&wq->wq_queue_lock);
475
continue;
476
}
477
478
/* there's work to be done! */
479
pow1 = fifo_remove(wq->wq_queue);
480
pow2 = fifo_remove(wq->wq_queue);
481
wq->wq_ninqueue -= 2;
482
483
batchid = wq->wq_next_batchid++;
484
485
pthread_mutex_unlock(&wq->wq_queue_lock);
486
487
debug(2, "%d: merging %p into %p\n", pthread_self(),
488
(void *)pow1, (void *)pow2);
489
merge_into_master(pow1, pow2, NULL, 0);
490
tdata_free(pow1);
491
492
/*
493
* merging is complete. place at the tail of the queue in
494
* proper order.
495
*/
496
pthread_mutex_lock(&wq->wq_queue_lock);
497
while (wq->wq_lastdonebatch + 1 != batchid) {
498
pthread_cond_wait(&wq->wq_done_cv,
499
&wq->wq_queue_lock);
500
}
501
502
wq->wq_lastdonebatch = batchid;
503
504
fifo_add(wq->wq_queue, pow2);
505
debug(2, "%d: added %p to queue, len now %d, ninqueue %d\n",
506
pthread_self(), (void *)pow2, fifo_len(wq->wq_queue),
507
wq->wq_ninqueue);
508
pthread_cond_broadcast(&wq->wq_done_cv);
509
pthread_cond_signal(&wq->wq_work_avail);
510
pthread_mutex_unlock(&wq->wq_queue_lock);
511
}
512
}
513
514
/*
515
* Main loop for worker threads.
516
*/
517
static void
518
worker_thread(workqueue_t *wq)
519
{
520
worker_runphase1(wq);
521
522
debug(2, "%d: entering first barrier\n", pthread_self());
523
524
if (barrier_wait(&wq->wq_bar1)) {
525
526
debug(2, "%d: doing work in first barrier\n", pthread_self());
527
528
finalize_phase_one(wq);
529
530
init_phase_two(wq);
531
532
debug(2, "%d: ninqueue is %d, %d on queue\n", pthread_self(),
533
wq->wq_ninqueue, fifo_len(wq->wq_queue));
534
}
535
536
debug(2, "%d: entering second barrier\n", pthread_self());
537
538
(void) barrier_wait(&wq->wq_bar2);
539
540
debug(2, "%d: phase 1 complete\n", pthread_self());
541
542
worker_runphase2(wq);
543
}
544
545
/*
546
* Pass a tdata_t tree, built from an input file, off to the work queue for
547
* consumption by worker threads.
548
*/
549
static int
550
merge_ctf_cb(tdata_t *td, char *name, void *arg)
551
{
552
workqueue_t *wq = arg;
553
554
debug(3, "Adding tdata %p for processing\n", (void *)td);
555
556
pthread_mutex_lock(&wq->wq_queue_lock);
557
while (fifo_len(wq->wq_queue) > wq->wq_ithrottle) {
558
debug(2, "Throttling input (len = %d, throttle = %d)\n",
559
fifo_len(wq->wq_queue), wq->wq_ithrottle);
560
pthread_cond_wait(&wq->wq_work_removed, &wq->wq_queue_lock);
561
}
562
563
fifo_add(wq->wq_queue, td);
564
debug(1, "Thread %d announcing %s\n", pthread_self(), name);
565
pthread_cond_broadcast(&wq->wq_work_avail);
566
pthread_mutex_unlock(&wq->wq_queue_lock);
567
568
return (1);
569
}
570
571
/*
572
* This program is intended to be invoked from a Makefile, as part of the build.
573
* As such, in the event of a failure or user-initiated interrupt (^C), we need
574
* to ensure that a subsequent re-make will cause ctfmerge to be executed again.
575
* Unfortunately, ctfmerge will usually be invoked directly after (and as part
576
* of the same Makefile rule as) a link, and will operate on the linked file
577
* in place. If we merely exit upon receipt of a SIGINT, a subsequent make
578
* will notice that the *linked* file is newer than the object files, and thus
579
* will not reinvoke ctfmerge. The only way to ensure that a subsequent make
580
* reinvokes ctfmerge, is to remove the file to which we are adding CTF
581
* data (confusingly named the output file). This means that the link will need
582
* to happen again, but links are generally fast, and we can't allow the merge
583
* to be skipped.
584
*
585
* Another possibility would be to block SIGINT entirely - to always run to
586
* completion. The run time of ctfmerge can, however, be measured in minutes
587
* in some cases, so this is not a valid option.
588
*/
589
static void
590
handle_sig(int sig)
591
{
592
terminate("Caught signal %d - exiting\n", sig);
593
}
594
595
static void
596
terminate_cleanup(void)
597
{
598
int dounlink = getenv("CTFMERGE_TERMINATE_NO_UNLINK") ? 0 : 1;
599
600
if (tmpname != NULL && dounlink)
601
unlink(tmpname);
602
603
if (outfile == NULL)
604
return;
605
606
#if !defined(__FreeBSD__)
607
if (dounlink) {
608
fprintf(stderr, "Removing %s\n", outfile);
609
unlink(outfile);
610
}
611
#endif
612
}
613
614
static void
615
copy_ctf_data(char *srcfile, char *destfile, int keep_stabs)
616
{
617
tdata_t *srctd;
618
619
if (read_ctf(&srcfile, 1, NULL, read_ctf_save_cb, &srctd, 1) == 0)
620
terminate("No CTF data found in source file %s\n", srcfile);
621
622
tmpname = mktmpname(destfile, ".ctf");
623
write_ctf(srctd, destfile, tmpname, CTF_COMPRESS | CTF_SWAP_BYTES | keep_stabs);
624
if (rename(tmpname, destfile) != 0) {
625
terminate("Couldn't rename temp file %s to %s", tmpname,
626
destfile);
627
}
628
free(tmpname);
629
tdata_free(srctd);
630
}
631
632
static void
633
wq_init(workqueue_t *wq, int nfiles)
634
{
635
int throttle, nslots, i;
636
637
if (getenv("CTFMERGE_MAX_SLOTS"))
638
nslots = atoi(getenv("CTFMERGE_MAX_SLOTS"));
639
else
640
nslots = MERGE_PHASE1_MAX_SLOTS;
641
642
if (getenv("CTFMERGE_PHASE1_BATCH_SIZE"))
643
wq->wq_maxbatchsz = atoi(getenv("CTFMERGE_PHASE1_BATCH_SIZE"));
644
else
645
wq->wq_maxbatchsz = MERGE_PHASE1_BATCH_SIZE;
646
647
nslots = MIN(nslots, (nfiles + wq->wq_maxbatchsz - 1) /
648
wq->wq_maxbatchsz);
649
650
wq->wq_wip = xcalloc(sizeof (wip_t) * nslots);
651
wq->wq_nwipslots = nslots;
652
wq->wq_nthreads = MIN(sysconf(_SC_NPROCESSORS_ONLN) * 3 / 2, nslots);
653
wq->wq_thread = xmalloc(sizeof (pthread_t) * wq->wq_nthreads);
654
655
if (getenv("CTFMERGE_INPUT_THROTTLE"))
656
throttle = atoi(getenv("CTFMERGE_INPUT_THROTTLE"));
657
else
658
throttle = MERGE_INPUT_THROTTLE_LEN;
659
wq->wq_ithrottle = throttle * wq->wq_nthreads;
660
661
debug(1, "Using %d slots, %d threads\n", wq->wq_nwipslots,
662
wq->wq_nthreads);
663
664
wq->wq_next_batchid = 0;
665
666
for (i = 0; i < nslots; i++) {
667
pthread_mutex_init(&wq->wq_wip[i].wip_lock, NULL);
668
pthread_cond_init(&wq->wq_wip[i].wip_cv, NULL);
669
wq->wq_wip[i].wip_batchid = wq->wq_next_batchid++;
670
}
671
672
pthread_mutex_init(&wq->wq_queue_lock, NULL);
673
wq->wq_queue = fifo_new();
674
pthread_cond_init(&wq->wq_work_avail, NULL);
675
pthread_cond_init(&wq->wq_work_removed, NULL);
676
wq->wq_ninqueue = nfiles;
677
wq->wq_nextpownum = 0;
678
679
pthread_mutex_init(&wq->wq_donequeue_lock, NULL);
680
wq->wq_donequeue = fifo_new();
681
wq->wq_lastdonebatch = -1;
682
683
pthread_cond_init(&wq->wq_done_cv, NULL);
684
685
pthread_cond_init(&wq->wq_alldone_cv, NULL);
686
wq->wq_alldone = 0;
687
688
barrier_init(&wq->wq_bar1, wq->wq_nthreads);
689
barrier_init(&wq->wq_bar2, wq->wq_nthreads);
690
691
wq->wq_nomorefiles = 0;
692
}
693
694
static void
695
start_threads(workqueue_t *wq)
696
{
697
sigset_t sets;
698
int i;
699
700
sigemptyset(&sets);
701
sigaddset(&sets, SIGINT);
702
sigaddset(&sets, SIGQUIT);
703
sigaddset(&sets, SIGTERM);
704
pthread_sigmask(SIG_BLOCK, &sets, NULL);
705
706
for (i = 0; i < wq->wq_nthreads; i++) {
707
pthread_create(&wq->wq_thread[i], NULL,
708
(void *(*)(void *))worker_thread, wq);
709
}
710
711
#ifdef illumos
712
sigset(SIGINT, handle_sig);
713
sigset(SIGQUIT, handle_sig);
714
sigset(SIGTERM, handle_sig);
715
#else
716
signal(SIGINT, handle_sig);
717
signal(SIGQUIT, handle_sig);
718
signal(SIGTERM, handle_sig);
719
#endif
720
pthread_sigmask(SIG_UNBLOCK, &sets, NULL);
721
}
722
723
static void
724
join_threads(workqueue_t *wq)
725
{
726
int i;
727
728
for (i = 0; i < wq->wq_nthreads; i++) {
729
pthread_join(wq->wq_thread[i], NULL);
730
}
731
}
732
733
static int
734
strcompare(const void *p1, const void *p2)
735
{
736
char *s1 = *((char **)p1);
737
char *s2 = *((char **)p2);
738
739
return (strcmp(s1, s2));
740
}
741
742
/*
743
* Core work queue structure; passed to worker threads on thread creation
744
* as the main point of coordination. Allocate as a static structure; we
745
* could have put this into a local variable in main, but passing a pointer
746
* into your stack to another thread is fragile at best and leads to some
747
* hard-to-debug failure modes.
748
*/
749
static workqueue_t wq;
750
751
int
752
main(int argc, char **argv)
753
{
754
tdata_t *mstrtd, *savetd;
755
char *uniqfile = NULL, *uniqlabel = NULL;
756
char *withfile = NULL;
757
char *label = NULL;
758
char **ifiles, **tifiles;
759
int verbose = 0, docopy = 0;
760
int write_fuzzy_match = 0;
761
int keep_stabs = 0;
762
int require_ctf = 0;
763
int nifiles, nielems;
764
int c, i, idx, tidx, err;
765
766
progname = basename(argv[0]);
767
768
if (getenv("CTFMERGE_DEBUG_LEVEL"))
769
debug_level = atoi(getenv("CTFMERGE_DEBUG_LEVEL"));
770
771
err = 0;
772
while ((c = getopt(argc, argv, ":cd:D:fgl:L:o:tvw:s")) != EOF) {
773
switch (c) {
774
case 'c':
775
docopy = 1;
776
break;
777
case 'd':
778
/* Uniquify against `uniqfile' */
779
uniqfile = optarg;
780
break;
781
case 'D':
782
/* Uniquify against label `uniqlabel' in `uniqfile' */
783
uniqlabel = optarg;
784
break;
785
case 'f':
786
write_fuzzy_match = CTF_FUZZY_MATCH;
787
break;
788
case 'g':
789
keep_stabs = CTF_KEEP_STABS;
790
break;
791
case 'l':
792
/* Label merged types with `label' */
793
label = optarg;
794
break;
795
case 'L':
796
/* Label merged types with getenv(`label`) */
797
if ((label = getenv(optarg)) == NULL)
798
label = CTF_DEFAULT_LABEL;
799
break;
800
case 'o':
801
/* Place merged types in CTF section in `outfile' */
802
outfile = optarg;
803
break;
804
case 't':
805
/* Insist *all* object files built from C have CTF */
806
require_ctf = 1;
807
break;
808
case 'v':
809
/* More debugging information */
810
verbose = 1;
811
break;
812
case 'w':
813
/* Additive merge with data from `withfile' */
814
withfile = optarg;
815
break;
816
case 's':
817
/* use the dynsym rather than the symtab */
818
dynsym = CTF_USE_DYNSYM;
819
break;
820
default:
821
usage();
822
exit(2);
823
}
824
}
825
826
/* Validate arguments */
827
if (docopy) {
828
if (uniqfile != NULL || uniqlabel != NULL || label != NULL ||
829
outfile != NULL || withfile != NULL || dynsym != 0)
830
err++;
831
832
if (argc - optind != 2)
833
err++;
834
} else {
835
if (uniqfile != NULL && withfile != NULL)
836
err++;
837
838
if (uniqlabel != NULL && uniqfile == NULL)
839
err++;
840
841
if (outfile == NULL || label == NULL)
842
err++;
843
844
if (argc - optind == 0)
845
err++;
846
}
847
848
if (err) {
849
usage();
850
exit(2);
851
}
852
853
if (getenv("STRIPSTABS_KEEP_STABS") != NULL)
854
keep_stabs = CTF_KEEP_STABS;
855
856
if (uniqfile && access(uniqfile, R_OK) != 0) {
857
warning("Uniquification file %s couldn't be opened and "
858
"will be ignored.\n", uniqfile);
859
uniqfile = NULL;
860
}
861
if (withfile && access(withfile, R_OK) != 0) {
862
warning("With file %s couldn't be opened and will be "
863
"ignored.\n", withfile);
864
withfile = NULL;
865
}
866
if (outfile && access(outfile, R_OK|W_OK) != 0)
867
terminate("Cannot open output file %s for r/w", outfile);
868
869
/*
870
* This is ugly, but we don't want to have to have a separate tool
871
* (yet) just for copying an ELF section with our specific requirements,
872
* so we shoe-horn a copier into ctfmerge.
873
*/
874
if (docopy) {
875
copy_ctf_data(argv[optind], argv[optind + 1], keep_stabs);
876
877
exit(0);
878
}
879
880
set_terminate_cleanup(terminate_cleanup);
881
882
/* Sort the input files and strip out duplicates */
883
nifiles = argc - optind;
884
ifiles = xmalloc(sizeof (char *) * nifiles);
885
tifiles = xmalloc(sizeof (char *) * nifiles);
886
887
for (i = 0; i < nifiles; i++)
888
tifiles[i] = argv[optind + i];
889
qsort(tifiles, nifiles, sizeof (char *), strcompare);
890
891
ifiles[0] = tifiles[0];
892
for (idx = 0, tidx = 1; tidx < nifiles; tidx++) {
893
if (strcmp(ifiles[idx], tifiles[tidx]) != 0)
894
ifiles[++idx] = tifiles[tidx];
895
}
896
nifiles = idx + 1;
897
898
/* Make sure they all exist */
899
if ((nielems = count_files(ifiles, nifiles)) < 0)
900
terminate("Some input files were inaccessible\n");
901
902
/* Prepare for the merge */
903
wq_init(&wq, nielems);
904
905
start_threads(&wq);
906
907
/*
908
* Start the merge
909
*
910
* We're reading everything from each of the object files, so we
911
* don't need to specify labels.
912
*/
913
if (read_ctf(ifiles, nifiles, NULL, merge_ctf_cb,
914
&wq, require_ctf) == 0) {
915
warning("No ctf sections found to merge\n");
916
exit(0);
917
}
918
919
pthread_mutex_lock(&wq.wq_queue_lock);
920
wq.wq_nomorefiles = 1;
921
pthread_cond_broadcast(&wq.wq_work_avail);
922
pthread_mutex_unlock(&wq.wq_queue_lock);
923
924
pthread_mutex_lock(&wq.wq_queue_lock);
925
while (wq.wq_alldone == 0)
926
pthread_cond_wait(&wq.wq_alldone_cv, &wq.wq_queue_lock);
927
pthread_mutex_unlock(&wq.wq_queue_lock);
928
929
join_threads(&wq);
930
931
/*
932
* All requested files have been merged, with the resulting tree in
933
* mstrtd. savetd is the tree that will be placed into the output file.
934
*
935
* Regardless of whether we're doing a normal uniquification or an
936
* additive merge, we need a type tree that has been uniquified
937
* against uniqfile or withfile, as appropriate.
938
*
939
* If we're doing a uniquification, we stuff the resulting tree into
940
* outfile. Otherwise, we add the tree to the tree already in withfile.
941
*/
942
assert(fifo_len(wq.wq_queue) == 1);
943
mstrtd = fifo_remove(wq.wq_queue);
944
945
if (verbose || debug_level) {
946
debug(2, "Statistics for td %p\n", (void *)mstrtd);
947
948
iidesc_stats(mstrtd->td_iihash);
949
}
950
951
if (uniqfile != NULL || withfile != NULL) {
952
char *reffile, *reflabel = NULL;
953
tdata_t *reftd;
954
955
if (uniqfile != NULL) {
956
reffile = uniqfile;
957
reflabel = uniqlabel;
958
} else
959
reffile = withfile;
960
961
if (read_ctf(&reffile, 1, reflabel, read_ctf_save_cb,
962
&reftd, require_ctf) == 0) {
963
terminate("No CTF data found in reference file %s\n",
964
reffile);
965
}
966
967
savetd = tdata_new();
968
969
if (CTF_V3_TYPE_ISCHILD(reftd->td_nextid))
970
terminate("No room for additional types in master\n");
971
972
savetd->td_nextid = withfile ? reftd->td_nextid :
973
CTF_V3_INDEX_TO_TYPE(1, TRUE);
974
merge_into_master(mstrtd, reftd, savetd, 0);
975
976
tdata_label_add(savetd, label, CTF_LABEL_LASTIDX);
977
978
if (withfile) {
979
/*
980
* savetd holds the new data to be added to the withfile
981
*/
982
tdata_t *withtd = reftd;
983
984
tdata_merge(withtd, savetd);
985
986
savetd = withtd;
987
} else {
988
char uniqname[MAXPATHLEN];
989
labelent_t *parle;
990
991
parle = tdata_label_top(reftd);
992
993
savetd->td_parlabel = xstrdup(parle->le_name);
994
995
strncpy(uniqname, reffile, sizeof (uniqname));
996
uniqname[MAXPATHLEN - 1] = '\0';
997
savetd->td_parname = xstrdup(basename(uniqname));
998
}
999
1000
} else {
1001
/*
1002
* No post processing. Write the merged tree as-is into the
1003
* output file.
1004
*/
1005
tdata_label_free(mstrtd);
1006
tdata_label_add(mstrtd, label, CTF_LABEL_LASTIDX);
1007
1008
savetd = mstrtd;
1009
}
1010
1011
tmpname = mktmpname(outfile, ".ctf");
1012
write_ctf(savetd, outfile, tmpname,
1013
CTF_COMPRESS | CTF_SWAP_BYTES | write_fuzzy_match | dynsym | keep_stabs);
1014
if (rename(tmpname, outfile) != 0)
1015
terminate("Couldn't rename output temp file %s", tmpname);
1016
free(tmpname);
1017
1018
return (0);
1019
}
1020
1021