Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/cddl/contrib/opensolaris/tools/ctf/cvt/dwarf.c
39586 views
1
/*
2
* CDDL HEADER START
3
*
4
* The contents of this file are subject to the terms of the
5
* Common Development and Distribution License (the "License").
6
* You may not use this file except in compliance with the License.
7
*
8
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9
* or http://www.opensolaris.org/os/licensing.
10
* See the License for the specific language governing permissions
11
* and limitations under the License.
12
*
13
* When distributing Covered Code, include this CDDL HEADER in each
14
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15
* If applicable, add the following below this CDDL HEADER, with the
16
* fields enclosed by brackets "[]" replaced with your own identifying
17
* information: Portions Copyright [yyyy] [name of copyright owner]
18
*
19
* CDDL HEADER END
20
*/
21
/*
22
* Copyright 2007 Sun Microsystems, Inc. All rights reserved.
23
* Use is subject to license terms.
24
*/
25
26
/*
27
* DWARF to tdata conversion
28
*
29
* For the most part, conversion is straightforward, proceeding in two passes.
30
* On the first pass, we iterate through every die, creating new type nodes as
31
* necessary. Referenced tdesc_t's are created in an uninitialized state, thus
32
* allowing type reference pointers to be filled in. If the tdesc_t
33
* corresponding to a given die can be completely filled out (sizes and offsets
34
* calculated, and so forth) without using any referenced types, the tdesc_t is
35
* marked as resolved. Consider an array type. If the type corresponding to
36
* the array contents has not yet been processed, we will create a blank tdesc
37
* for the contents type (only the type ID will be filled in, relying upon the
38
* later portion of the first pass to encounter and complete the referenced
39
* type). We will then attempt to determine the size of the array. If the
40
* array has a byte size attribute, we will have completely characterized the
41
* array type, and will be able to mark it as resolved. The lack of a byte
42
* size attribute, on the other hand, will prevent us from fully resolving the
43
* type, as the size will only be calculable with reference to the contents
44
* type, which has not, as yet, been encountered. The array type will thus be
45
* left without the resolved flag, and the first pass will continue.
46
*
47
* When we begin the second pass, we will have created tdesc_t nodes for every
48
* type in the section. We will traverse the tree, from the iidescs down,
49
* processing each unresolved node. As the referenced nodes will have been
50
* populated, the array type used in our example above will be able to use the
51
* size of the referenced types (if available) to determine its own type. The
52
* traversal will be repeated until all types have been resolved or we have
53
* failed to make progress. When all tdescs have been resolved, the conversion
54
* is complete.
55
*
56
* There are, as always, a few special cases that are handled during the first
57
* and second passes:
58
*
59
* 1. Empty enums - GCC will occasionally emit an enum without any members.
60
* Later on in the file, it will emit the same enum type, though this time
61
* with the full complement of members. All references to the memberless
62
* enum need to be redirected to the full definition. During the first
63
* pass, each enum is entered in dm_enumhash, along with a pointer to its
64
* corresponding tdesc_t. If, during the second pass, we encounter a
65
* memberless enum, we use the hash to locate the full definition. All
66
* tdescs referencing the empty enum are then redirected.
67
*
68
* 2. Forward declarations - If the compiler sees a forward declaration for
69
* a structure, followed by the definition of that structure, it will emit
70
* DWARF data for both the forward declaration and the definition. We need
71
* to resolve the forward declarations when possible, by redirecting
72
* forward-referencing tdescs to the actual struct/union definitions. This
73
* redirection is done completely within the first pass. We begin by
74
* recording all forward declarations in dw_fwdhash. When we define a
75
* structure, we check to see if there have been any corresponding forward
76
* declarations. If so, we redirect the tdescs which referenced the forward
77
* declarations to the structure or union definition.
78
*
79
* XXX see if a post traverser will allow the elimination of repeated pass 2
80
* traversals.
81
*/
82
83
#include <stdio.h>
84
#include <stdlib.h>
85
#include <string.h>
86
#include <strings.h>
87
#include <errno.h>
88
#include <libelf.h>
89
#include <libdwarf.h>
90
#include <libgen.h>
91
#include <dwarf.h>
92
93
#include "ctf_headers.h"
94
#include "ctftools.h"
95
#include "memory.h"
96
#include "list.h"
97
#include "traverse.h"
98
99
/*
100
* We need to define a couple of our own intrinsics, to smooth out some of the
101
* differences between the GCC and DevPro DWARF emitters. See the referenced
102
* routines and the special cases in the file comment for more details.
103
*
104
* Type IDs are 32 bits wide. We're going to use the top of that field to
105
* indicate types that we've created ourselves.
106
*/
107
#define TID_FILEMAX 0x3fffffff /* highest tid from file */
108
#define TID_VOID 0x40000001 /* see die_void() */
109
#define TID_LONG 0x40000002 /* see die_array() */
110
111
#define TID_MFGTID_BASE 0x40000003 /* first mfg'd tid */
112
113
/*
114
* To reduce the staggering amount of error-handling code that would otherwise
115
* be required, the attribute-retrieval routines handle most of their own
116
* errors. If the following flag is supplied as the value of the `req'
117
* argument, they will also handle the absence of a requested attribute by
118
* terminating the program.
119
*/
120
#define DW_ATTR_REQ 1
121
122
#define TDESC_HASH_BUCKETS 511
123
124
typedef struct dwarf {
125
Dwarf_Debug dw_dw; /* for libdwarf */
126
Dwarf_Error dw_err; /* for libdwarf */
127
Dwarf_Off dw_maxoff; /* highest legal offset in this cu */
128
tdata_t *dw_td; /* root of the tdesc/iidesc tree */
129
hash_t *dw_tidhash; /* hash of tdescs by t_id */
130
hash_t *dw_fwdhash; /* hash of fwd decls by name */
131
hash_t *dw_enumhash; /* hash of memberless enums by name */
132
tdesc_t *dw_void; /* manufactured void type */
133
tdesc_t *dw_long; /* manufactured long type for arrays */
134
size_t dw_ptrsz; /* size of a pointer in this file */
135
tid_t dw_mfgtid_last; /* last mfg'd type ID used */
136
uint_t dw_nunres; /* count of unresolved types */
137
char *dw_cuname; /* name of compilation unit */
138
} dwarf_t;
139
140
static void die_create_one(dwarf_t *, Dwarf_Die);
141
static void die_create(dwarf_t *, Dwarf_Die);
142
143
static tid_t
144
mfgtid_next(dwarf_t *dw)
145
{
146
return (++dw->dw_mfgtid_last);
147
}
148
149
static void
150
tdesc_add(dwarf_t *dw, tdesc_t *tdp)
151
{
152
hash_add(dw->dw_tidhash, tdp);
153
}
154
155
static tdesc_t *
156
tdesc_lookup(dwarf_t *dw, int tid)
157
{
158
tdesc_t tmpl;
159
void *tdp;
160
161
tmpl.t_id = tid;
162
163
if (hash_find(dw->dw_tidhash, &tmpl, &tdp))
164
return (tdp);
165
else
166
return (NULL);
167
}
168
169
/*
170
* Resolve a tdesc down to a node which should have a size. Returns the size,
171
* zero if the size hasn't yet been determined.
172
*/
173
static size_t
174
tdesc_size(tdesc_t *tdp)
175
{
176
for (;;) {
177
switch (tdp->t_type) {
178
case INTRINSIC:
179
case POINTER:
180
case ARRAY:
181
case FUNCTION:
182
case STRUCT:
183
case UNION:
184
case ENUM:
185
return (tdp->t_size);
186
187
case FORWARD:
188
return (0);
189
190
case TYPEDEF:
191
case VOLATILE:
192
case CONST:
193
case RESTRICT:
194
tdp = tdp->t_tdesc;
195
continue;
196
197
case 0: /* not yet defined */
198
return (0);
199
200
default:
201
terminate("tdp %u: tdesc_size on unknown type %d\n",
202
tdp->t_id, tdp->t_type);
203
}
204
}
205
}
206
207
static size_t
208
tdesc_bitsize(tdesc_t *tdp)
209
{
210
for (;;) {
211
switch (tdp->t_type) {
212
case INTRINSIC:
213
return (tdp->t_intr->intr_nbits);
214
215
case ARRAY:
216
case FUNCTION:
217
case STRUCT:
218
case UNION:
219
case ENUM:
220
case POINTER:
221
return (tdp->t_size * NBBY);
222
223
case FORWARD:
224
return (0);
225
226
case TYPEDEF:
227
case VOLATILE:
228
case RESTRICT:
229
case CONST:
230
tdp = tdp->t_tdesc;
231
continue;
232
233
case 0: /* not yet defined */
234
return (0);
235
236
default:
237
terminate("tdp %u: tdesc_bitsize on unknown type %d\n",
238
tdp->t_id, tdp->t_type);
239
}
240
}
241
}
242
243
static tdesc_t *
244
tdesc_basetype(tdesc_t *tdp)
245
{
246
for (;;) {
247
switch (tdp->t_type) {
248
case TYPEDEF:
249
case VOLATILE:
250
case RESTRICT:
251
case CONST:
252
tdp = tdp->t_tdesc;
253
break;
254
case 0: /* not yet defined */
255
return (NULL);
256
default:
257
return (tdp);
258
}
259
}
260
}
261
262
static Dwarf_Off
263
die_off(dwarf_t *dw, Dwarf_Die die)
264
{
265
Dwarf_Off off;
266
267
if (dwarf_dieoffset(die, &off, &dw->dw_err) == DW_DLV_OK)
268
return (off);
269
270
terminate("failed to get offset for die: %s\n",
271
dwarf_errmsg(dw->dw_err));
272
/*NOTREACHED*/
273
return (0);
274
}
275
276
static Dwarf_Die
277
die_sibling(dwarf_t *dw, Dwarf_Die die)
278
{
279
Dwarf_Die sib;
280
int rc;
281
282
if ((rc = dwarf_siblingof(dw->dw_dw, die, &sib, &dw->dw_err)) ==
283
DW_DLV_OK)
284
return (sib);
285
else if (rc == DW_DLV_NO_ENTRY)
286
return (NULL);
287
288
terminate("die %llu: failed to find type sibling: %s\n",
289
die_off(dw, die), dwarf_errmsg(dw->dw_err));
290
/*NOTREACHED*/
291
return (NULL);
292
}
293
294
static Dwarf_Die
295
die_child(dwarf_t *dw, Dwarf_Die die)
296
{
297
Dwarf_Die child;
298
int rc;
299
300
if ((rc = dwarf_child(die, &child, &dw->dw_err)) == DW_DLV_OK)
301
return (child);
302
else if (rc == DW_DLV_NO_ENTRY)
303
return (NULL);
304
305
terminate("die %llu: failed to find type child: %s\n",
306
die_off(dw, die), dwarf_errmsg(dw->dw_err));
307
/*NOTREACHED*/
308
return (NULL);
309
}
310
311
static Dwarf_Half
312
die_tag(dwarf_t *dw, Dwarf_Die die)
313
{
314
Dwarf_Half tag;
315
316
if (dwarf_tag(die, &tag, &dw->dw_err) == DW_DLV_OK)
317
return (tag);
318
319
terminate("die %llu: failed to get tag for type: %s\n",
320
die_off(dw, die), dwarf_errmsg(dw->dw_err));
321
/*NOTREACHED*/
322
return (0);
323
}
324
325
static Dwarf_Attribute
326
die_attr(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name, int req)
327
{
328
Dwarf_Attribute attr;
329
int rc;
330
331
if ((rc = dwarf_attr(die, name, &attr, &dw->dw_err)) == DW_DLV_OK) {
332
return (attr);
333
} else if (rc == DW_DLV_NO_ENTRY) {
334
if (req) {
335
terminate("die %llu: no attr 0x%x\n", die_off(dw, die),
336
name);
337
} else {
338
return (NULL);
339
}
340
}
341
342
terminate("die %llu: failed to get attribute for type: %s\n",
343
die_off(dw, die), dwarf_errmsg(dw->dw_err));
344
/*NOTREACHED*/
345
return (NULL);
346
}
347
348
static int
349
die_signed(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name, Dwarf_Signed *valp,
350
int req)
351
{
352
*valp = 0;
353
if (dwarf_attrval_signed(die, name, valp, &dw->dw_err) != DW_DLV_OK) {
354
if (req)
355
terminate("die %llu: failed to get signed: %s\n",
356
die_off(dw, die), dwarf_errmsg(dw->dw_err));
357
return (0);
358
}
359
360
return (1);
361
}
362
363
static int
364
die_unsigned(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name, Dwarf_Unsigned *valp,
365
int req)
366
{
367
*valp = 0;
368
if (dwarf_attrval_unsigned(die, name, valp, &dw->dw_err) != DW_DLV_OK) {
369
if (req)
370
terminate("die %llu: failed to get unsigned: %s\n",
371
die_off(dw, die), dwarf_errmsg(dw->dw_err));
372
return (0);
373
}
374
375
return (1);
376
}
377
378
static int
379
die_bool(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name, Dwarf_Bool *valp, int req)
380
{
381
*valp = 0;
382
383
if (dwarf_attrval_flag(die, name, valp, &dw->dw_err) != DW_DLV_OK) {
384
if (req)
385
terminate("die %llu: failed to get flag: %s\n",
386
die_off(dw, die), dwarf_errmsg(dw->dw_err));
387
return (0);
388
}
389
390
return (1);
391
}
392
393
static int
394
die_string(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name, char **strp, int req)
395
{
396
const char *str = NULL;
397
398
if (dwarf_attrval_string(die, name, &str, &dw->dw_err) != DW_DLV_OK ||
399
str == NULL) {
400
if (req)
401
terminate("die %llu: failed to get string: %s\n",
402
die_off(dw, die), dwarf_errmsg(dw->dw_err));
403
else
404
*strp = NULL;
405
return (0);
406
} else
407
*strp = xstrdup(str);
408
409
return (1);
410
}
411
412
static Dwarf_Off
413
die_attr_ref(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name)
414
{
415
Dwarf_Off off;
416
417
if (dwarf_attrval_unsigned(die, name, &off, &dw->dw_err) != DW_DLV_OK) {
418
terminate("die %llu: failed to get ref: %s\n",
419
die_off(dw, die), dwarf_errmsg(dw->dw_err));
420
}
421
422
return (off);
423
}
424
425
static char *
426
die_name(dwarf_t *dw, Dwarf_Die die)
427
{
428
char *str = NULL;
429
430
(void) die_string(dw, die, DW_AT_name, &str, 0);
431
if (str == NULL)
432
str = xstrdup("");
433
434
return (str);
435
}
436
437
static int
438
die_isdecl(dwarf_t *dw, Dwarf_Die die)
439
{
440
Dwarf_Bool val;
441
442
return (die_bool(dw, die, DW_AT_declaration, &val, 0) && val);
443
}
444
445
static int
446
die_isglobal(dwarf_t *dw, Dwarf_Die die)
447
{
448
Dwarf_Signed vis;
449
Dwarf_Bool ext;
450
451
/*
452
* Some compilers (gcc) use DW_AT_external to indicate function
453
* visibility. Others (Sun) use DW_AT_visibility.
454
*/
455
if (die_signed(dw, die, DW_AT_visibility, &vis, 0))
456
return (vis == DW_VIS_exported);
457
else
458
return (die_bool(dw, die, DW_AT_external, &ext, 0) && ext);
459
}
460
461
static tdesc_t *
462
die_add(dwarf_t *dw, Dwarf_Off off)
463
{
464
tdesc_t *tdp = xcalloc(sizeof (tdesc_t));
465
466
tdp->t_id = off;
467
468
tdesc_add(dw, tdp);
469
470
return (tdp);
471
}
472
473
static tdesc_t *
474
die_lookup_pass1(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name)
475
{
476
Dwarf_Off ref = die_attr_ref(dw, die, name);
477
tdesc_t *tdp;
478
479
if ((tdp = tdesc_lookup(dw, ref)) != NULL)
480
return (tdp);
481
482
return (die_add(dw, ref));
483
}
484
485
static int
486
die_mem_offset(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name,
487
Dwarf_Unsigned *valp, int req __unused)
488
{
489
Dwarf_Locdesc *loc = NULL;
490
Dwarf_Signed locnum = 0;
491
Dwarf_Attribute at;
492
Dwarf_Half form;
493
494
if (name != DW_AT_data_member_location)
495
terminate("die %llu: can only process attribute "
496
"DW_AT_data_member_location\n", die_off(dw, die));
497
498
if ((at = die_attr(dw, die, name, 0)) == NULL)
499
return (0);
500
501
if (dwarf_whatform(at, &form, &dw->dw_err) != DW_DLV_OK)
502
return (0);
503
504
switch (form) {
505
case DW_FORM_sec_offset:
506
case DW_FORM_block:
507
case DW_FORM_block1:
508
case DW_FORM_block2:
509
case DW_FORM_block4:
510
/*
511
* GCC in base and Clang (3.3 or below) generates
512
* DW_AT_data_member_location attribute with DW_FORM_block*
513
* form. The attribute contains one DW_OP_plus_uconst
514
* operator. The member offset stores in the operand.
515
*/
516
if (dwarf_loclist(at, &loc, &locnum, &dw->dw_err) != DW_DLV_OK)
517
return (0);
518
if (locnum != 1 || loc->ld_s->lr_atom != DW_OP_plus_uconst) {
519
terminate("die %llu: cannot parse member offset with "
520
"operator other than DW_OP_plus_uconst\n",
521
die_off(dw, die));
522
}
523
*valp = loc->ld_s->lr_number;
524
if (loc != NULL) {
525
dwarf_dealloc(dw->dw_dw, loc->ld_s, DW_DLA_LOC_BLOCK);
526
dwarf_dealloc(dw->dw_dw, loc, DW_DLA_LOCDESC);
527
}
528
break;
529
530
case DW_FORM_data1:
531
case DW_FORM_data2:
532
case DW_FORM_data4:
533
case DW_FORM_data8:
534
case DW_FORM_udata:
535
/*
536
* Clang 3.4 generates DW_AT_data_member_location attribute
537
* with DW_FORM_data* form (constant class). The attribute
538
* stores a contant value which is the member offset.
539
*
540
* However, note that DW_FORM_data[48] in DWARF version 2 or 3
541
* could be used as a section offset (offset into .debug_loc in
542
* this case). Here we assume the attribute always stores a
543
* constant because we know Clang 3.4 does this and GCC in
544
* base won't emit DW_FORM_data[48] for this attribute. This
545
* code will remain correct if future vesrions of Clang and
546
* GCC conform to DWARF4 standard and only use the form
547
* DW_FORM_sec_offset for section offset.
548
*/
549
if (dwarf_attrval_unsigned(die, name, valp, &dw->dw_err) !=
550
DW_DLV_OK)
551
return (0);
552
break;
553
554
default:
555
terminate("die %llu: cannot parse member offset with form "
556
"%u\n", die_off(dw, die), form);
557
}
558
559
return (1);
560
}
561
562
static tdesc_t *
563
tdesc_intr_common(dwarf_t *dw, int tid, const char *name, size_t sz)
564
{
565
tdesc_t *tdp;
566
intr_t *intr;
567
568
intr = xcalloc(sizeof (intr_t));
569
intr->intr_type = INTR_INT;
570
intr->intr_signed = 1;
571
intr->intr_nbits = sz * NBBY;
572
573
tdp = xcalloc(sizeof (tdesc_t));
574
tdp->t_name = xstrdup(name);
575
tdp->t_size = sz;
576
tdp->t_id = tid;
577
tdp->t_type = INTRINSIC;
578
tdp->t_intr = intr;
579
tdp->t_flags = TDESC_F_RESOLVED;
580
581
tdesc_add(dw, tdp);
582
583
return (tdp);
584
}
585
586
/*
587
* Manufacture a void type. Used for gcc-emitted stabs, where the lack of a
588
* type reference implies a reference to a void type. A void *, for example
589
* will be represented by a pointer die without a DW_AT_type. CTF requires
590
* that pointer nodes point to something, so we'll create a void for use as
591
* the target. Note that the DWARF data may already create a void type. Ours
592
* would then be a duplicate, but it'll be removed in the self-uniquification
593
* merge performed at the completion of DWARF->tdesc conversion.
594
*/
595
static tdesc_t *
596
tdesc_intr_void(dwarf_t *dw)
597
{
598
if (dw->dw_void == NULL)
599
dw->dw_void = tdesc_intr_common(dw, TID_VOID, "void", 0);
600
601
return (dw->dw_void);
602
}
603
604
static tdesc_t *
605
tdesc_intr_long(dwarf_t *dw)
606
{
607
if (dw->dw_long == NULL) {
608
dw->dw_long = tdesc_intr_common(dw, TID_LONG, "long",
609
dw->dw_ptrsz);
610
}
611
612
return (dw->dw_long);
613
}
614
615
/*
616
* Used for creating bitfield types. We create a copy of an existing intrinsic,
617
* adjusting the size of the copy to match what the caller requested. The
618
* caller can then use the copy as the type for a bitfield structure member.
619
*/
620
static tdesc_t *
621
tdesc_intr_clone(dwarf_t *dw, tdesc_t *old, size_t bitsz, const char *suffix)
622
{
623
tdesc_t *new = xcalloc(sizeof (tdesc_t));
624
625
if (!(old->t_flags & TDESC_F_RESOLVED)) {
626
terminate("tdp %u: attempt to make a bit field from an "
627
"unresolved type\n", old->t_id);
628
}
629
630
xasprintf(&new->t_name, "%s %s", old->t_name, suffix);
631
new->t_size = old->t_size;
632
new->t_id = mfgtid_next(dw);
633
new->t_type = INTRINSIC;
634
new->t_flags = TDESC_F_RESOLVED;
635
636
new->t_intr = xcalloc(sizeof (intr_t));
637
bcopy(old->t_intr, new->t_intr, sizeof (intr_t));
638
new->t_intr->intr_nbits = bitsz;
639
640
tdesc_add(dw, new);
641
642
return (new);
643
}
644
645
static void
646
tdesc_array_create(dwarf_t *dw, Dwarf_Die dim, tdesc_t *arrtdp,
647
tdesc_t *dimtdp)
648
{
649
Dwarf_Unsigned uval;
650
Dwarf_Signed sval;
651
tdesc_t *ctdp = NULL;
652
Dwarf_Die dim2;
653
ardef_t *ar;
654
655
if ((dim2 = die_sibling(dw, dim)) == NULL) {
656
ctdp = arrtdp;
657
} else if (die_tag(dw, dim2) == DW_TAG_subrange_type) {
658
ctdp = xcalloc(sizeof (tdesc_t));
659
ctdp->t_id = mfgtid_next(dw);
660
debug(3, "die %llu: creating new type %u for sub-dimension\n",
661
die_off(dw, dim2), ctdp->t_id);
662
tdesc_array_create(dw, dim2, arrtdp, ctdp);
663
} else {
664
terminate("die %llu: unexpected non-subrange node in array\n",
665
die_off(dw, dim2));
666
}
667
668
dimtdp->t_type = ARRAY;
669
dimtdp->t_ardef = ar = xcalloc(sizeof (ardef_t));
670
671
/*
672
* Array bounds can be signed or unsigned, but there are several kinds
673
* of signless forms (data1, data2, etc) that take their sign from the
674
* routine that is trying to interpret them. That is, data1 can be
675
* either signed or unsigned, depending on whether you use the signed or
676
* unsigned accessor function. GCC will use the signless forms to store
677
* unsigned values which have their high bit set, so we need to try to
678
* read them first as unsigned to get positive values. We could also
679
* try signed first, falling back to unsigned if we got a negative
680
* value.
681
*/
682
if (die_unsigned(dw, dim, DW_AT_upper_bound, &uval, 0))
683
ar->ad_nelems = uval + 1;
684
else if (die_signed(dw, dim, DW_AT_upper_bound, &sval, 0))
685
ar->ad_nelems = sval + 1;
686
else if (die_unsigned(dw, dim, DW_AT_count, &uval, 0))
687
ar->ad_nelems = uval;
688
else if (die_signed(dw, dim, DW_AT_count, &sval, 0))
689
ar->ad_nelems = sval;
690
else
691
ar->ad_nelems = 0;
692
693
/*
694
* Different compilers use different index types. Force the type to be
695
* a common, known value (long).
696
*/
697
ar->ad_idxtype = tdesc_intr_long(dw);
698
ar->ad_contents = ctdp;
699
700
if (ar->ad_contents->t_size != 0) {
701
dimtdp->t_size = ar->ad_contents->t_size * ar->ad_nelems;
702
dimtdp->t_flags |= TDESC_F_RESOLVED;
703
}
704
}
705
706
/*
707
* Create a tdesc from an array node. Some arrays will come with byte size
708
* attributes, and thus can be resolved immediately. Others don't, and will
709
* need to wait until the second pass for resolution.
710
*/
711
static void
712
die_array_create(dwarf_t *dw, Dwarf_Die arr, Dwarf_Off off, tdesc_t *tdp)
713
{
714
tdesc_t *arrtdp = die_lookup_pass1(dw, arr, DW_AT_type);
715
Dwarf_Unsigned uval;
716
Dwarf_Die dim;
717
718
debug(3, "die %llu <%llx>: creating array\n", off, off);
719
720
if ((dim = die_child(dw, arr)) == NULL ||
721
die_tag(dw, dim) != DW_TAG_subrange_type)
722
terminate("die %llu: failed to retrieve array bounds\n", off);
723
724
tdesc_array_create(dw, dim, arrtdp, tdp);
725
726
if (die_unsigned(dw, arr, DW_AT_byte_size, &uval, 0)) {
727
tdesc_t *dimtdp;
728
int flags;
729
730
tdp->t_size = uval;
731
732
/*
733
* Ensure that sub-dimensions have sizes too before marking
734
* as resolved.
735
*/
736
flags = TDESC_F_RESOLVED;
737
for (dimtdp = tdp->t_ardef->ad_contents;
738
dimtdp->t_type == ARRAY;
739
dimtdp = dimtdp->t_ardef->ad_contents) {
740
if (!(dimtdp->t_flags & TDESC_F_RESOLVED)) {
741
flags = 0;
742
break;
743
}
744
}
745
746
tdp->t_flags |= flags;
747
}
748
749
debug(3, "die %llu <%llx>: array nelems %u size %u\n", off, off,
750
tdp->t_ardef->ad_nelems, tdp->t_size);
751
}
752
753
/*ARGSUSED1*/
754
static int
755
die_array_resolve(tdesc_t *tdp, tdesc_t **tdpp __unused, void *private)
756
{
757
dwarf_t *dw = private;
758
size_t sz;
759
760
if (tdp->t_flags & TDESC_F_RESOLVED)
761
return (1);
762
763
debug(3, "trying to resolve array %d (cont %d)\n", tdp->t_id,
764
tdp->t_ardef->ad_contents->t_id);
765
766
if ((sz = tdesc_size(tdp->t_ardef->ad_contents)) == 0 &&
767
(tdp->t_ardef->ad_contents->t_flags & TDESC_F_RESOLVED) == 0) {
768
debug(3, "unable to resolve array %s (%d) contents %d\n",
769
tdesc_name(tdp), tdp->t_id,
770
tdp->t_ardef->ad_contents->t_id);
771
772
dw->dw_nunres++;
773
return (1);
774
}
775
776
tdp->t_size = sz * tdp->t_ardef->ad_nelems;
777
tdp->t_flags |= TDESC_F_RESOLVED;
778
779
debug(3, "resolved array %d: %u bytes\n", tdp->t_id, tdp->t_size);
780
781
return (1);
782
}
783
784
/*ARGSUSED1*/
785
static int
786
die_array_failed(tdesc_t *tdp, tdesc_t **tdpp __unused, void *private __unused)
787
{
788
tdesc_t *cont = tdp->t_ardef->ad_contents;
789
790
if (tdp->t_flags & TDESC_F_RESOLVED)
791
return (1);
792
793
fprintf(stderr, "Array %d: failed to size contents type %s (%d)\n",
794
tdp->t_id, tdesc_name(cont), cont->t_id);
795
796
return (1);
797
}
798
799
/*
800
* Most enums (those with members) will be resolved during this first pass.
801
* Others - those without members (see the file comment) - won't be, and will
802
* need to wait until the second pass when they can be matched with their full
803
* definitions.
804
*/
805
static void
806
die_enum_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp)
807
{
808
Dwarf_Die mem;
809
Dwarf_Unsigned uval;
810
Dwarf_Signed sval;
811
812
if (die_isdecl(dw, die)) {
813
tdp->t_type = FORWARD;
814
return;
815
}
816
817
debug(3, "die %llu: creating enum\n", off);
818
819
tdp->t_type = ENUM;
820
821
(void) die_unsigned(dw, die, DW_AT_byte_size, &uval, DW_ATTR_REQ);
822
tdp->t_size = uval;
823
824
if ((mem = die_child(dw, die)) != NULL) {
825
elist_t **elastp = &tdp->t_emem;
826
827
do {
828
elist_t *el;
829
830
if (die_tag(dw, mem) != DW_TAG_enumerator) {
831
/* Nested type declaration */
832
die_create_one(dw, mem);
833
continue;
834
}
835
836
el = xcalloc(sizeof (elist_t));
837
el->el_name = die_name(dw, mem);
838
839
if (die_signed(dw, mem, DW_AT_const_value, &sval, 0)) {
840
el->el_number = sval;
841
} else if (die_unsigned(dw, mem, DW_AT_const_value,
842
&uval, 0)) {
843
el->el_number = uval;
844
} else {
845
terminate("die %llu: enum %llu: member without "
846
"value\n", off, die_off(dw, mem));
847
}
848
849
debug(3, "die %llu: enum %llu: created %s = %d\n", off,
850
die_off(dw, mem), el->el_name, el->el_number);
851
852
*elastp = el;
853
elastp = &el->el_next;
854
855
} while ((mem = die_sibling(dw, mem)) != NULL);
856
857
hash_add(dw->dw_enumhash, tdp);
858
859
tdp->t_flags |= TDESC_F_RESOLVED;
860
861
if (tdp->t_name != NULL) {
862
iidesc_t *ii = xcalloc(sizeof (iidesc_t));
863
ii->ii_type = II_SOU;
864
ii->ii_name = xstrdup(tdp->t_name);
865
ii->ii_dtype = tdp;
866
867
iidesc_add(dw->dw_td->td_iihash, ii);
868
}
869
}
870
}
871
872
static int
873
die_enum_match(void *arg1, void *arg2)
874
{
875
tdesc_t *tdp = arg1, **fullp = arg2;
876
877
if (tdp->t_emem != NULL) {
878
*fullp = tdp;
879
return (-1); /* stop the iteration */
880
}
881
882
return (0);
883
}
884
885
/*ARGSUSED1*/
886
static int
887
die_enum_resolve(tdesc_t *tdp, tdesc_t **tdpp __unused, void *private)
888
{
889
dwarf_t *dw = private;
890
tdesc_t *full = NULL;
891
892
if (tdp->t_flags & TDESC_F_RESOLVED)
893
return (1);
894
895
(void) hash_find_iter(dw->dw_enumhash, tdp, die_enum_match, &full);
896
897
/*
898
* The answer to this one won't change from iteration to iteration,
899
* so don't even try.
900
*/
901
if (full == NULL) {
902
terminate("tdp %u: enum %s has no members\n", tdp->t_id,
903
tdesc_name(tdp));
904
}
905
906
debug(3, "tdp %u: enum %s redirected to %u\n", tdp->t_id,
907
tdesc_name(tdp), full->t_id);
908
909
tdp->t_flags |= TDESC_F_RESOLVED;
910
911
return (1);
912
}
913
914
static int
915
die_fwd_map(void *arg1, void *arg2)
916
{
917
tdesc_t *fwd = arg1, *sou = arg2;
918
919
debug(3, "tdp %u: mapped forward %s to sou %u\n", fwd->t_id,
920
tdesc_name(fwd), sou->t_id);
921
fwd->t_tdesc = sou;
922
923
return (0);
924
}
925
926
/*
927
* Structures and unions will never be resolved during the first pass, as we
928
* won't be able to fully determine the member sizes. The second pass, which
929
* have access to sizing information, will be able to complete the resolution.
930
*/
931
static void
932
die_sou_create(dwarf_t *dw, Dwarf_Die str, Dwarf_Off off, tdesc_t *tdp,
933
int type, const char *typename)
934
{
935
Dwarf_Unsigned sz, bitsz, bitoff;
936
#if BYTE_ORDER == _LITTLE_ENDIAN
937
Dwarf_Unsigned bysz;
938
#endif
939
Dwarf_Die mem;
940
mlist_t *ml, **mlastp;
941
iidesc_t *ii;
942
943
tdp->t_type = (die_isdecl(dw, str) ? FORWARD : type);
944
945
debug(3, "die %llu: creating %s %s\n", off,
946
(tdp->t_type == FORWARD ? "forward decl" : typename),
947
tdesc_name(tdp));
948
949
if (tdp->t_type == FORWARD) {
950
hash_add(dw->dw_fwdhash, tdp);
951
return;
952
}
953
954
(void) hash_find_iter(dw->dw_fwdhash, tdp, die_fwd_map, tdp);
955
956
(void) die_unsigned(dw, str, DW_AT_byte_size, &sz, DW_ATTR_REQ);
957
tdp->t_size = sz;
958
959
/*
960
* GCC allows empty SOUs as an extension.
961
*/
962
if ((mem = die_child(dw, str)) == NULL) {
963
goto out;
964
}
965
966
mlastp = &tdp->t_members;
967
968
do {
969
Dwarf_Off memoff = die_off(dw, mem);
970
Dwarf_Half tag = die_tag(dw, mem);
971
Dwarf_Unsigned mloff;
972
973
if (tag != DW_TAG_member) {
974
/* Nested type declaration */
975
die_create_one(dw, mem);
976
continue;
977
}
978
979
debug(3, "die %llu: mem %llu: creating member\n", off, memoff);
980
981
ml = xcalloc(sizeof (mlist_t));
982
983
/*
984
* This could be a GCC anon struct/union member, so we'll allow
985
* an empty name, even though nothing can really handle them
986
* properly. Note that some versions of GCC miss out debug
987
* info for anon structs, though recent versions are fixed (gcc
988
* bug 11816).
989
*/
990
if ((ml->ml_name = die_name(dw, mem)) == NULL)
991
ml->ml_name = NULL;
992
993
ml->ml_type = die_lookup_pass1(dw, mem, DW_AT_type);
994
995
if (die_mem_offset(dw, mem, DW_AT_data_member_location,
996
&mloff, 0)) {
997
debug(3, "die %llu: got mloff %llx\n", off,
998
(u_longlong_t)mloff);
999
ml->ml_offset = mloff * 8;
1000
}
1001
1002
if (die_unsigned(dw, mem, DW_AT_bit_size, &bitsz, 0))
1003
ml->ml_size = bitsz;
1004
else
1005
ml->ml_size = tdesc_bitsize(ml->ml_type);
1006
1007
if (die_unsigned(dw, mem, DW_AT_data_bit_offset, &bitoff, 0)) {
1008
ml->ml_offset += bitoff;
1009
} else if (die_unsigned(dw, mem, DW_AT_bit_offset, &bitoff, 0)) {
1010
#if BYTE_ORDER == _BIG_ENDIAN
1011
ml->ml_offset += bitoff;
1012
#else
1013
/*
1014
* Note that Clang 3.4 will sometimes generate
1015
* member DIE before generating the DIE for the
1016
* member's type. The code can not handle this
1017
* properly so that tdesc_bitsize(ml->ml_type) will
1018
* return 0 because ml->ml_type is unknown. As a
1019
* result, a wrong member offset will be calculated.
1020
* To workaround this, we can instead try to
1021
* retrieve the value of DW_AT_byte_size attribute
1022
* which stores the byte size of the space occupied
1023
* by the type. If this attribute exists, its value
1024
* should equal to tdesc_bitsize(ml->ml_type)/NBBY.
1025
*/
1026
if (die_unsigned(dw, mem, DW_AT_byte_size, &bysz, 0) &&
1027
bysz > 0)
1028
ml->ml_offset += bysz * NBBY - bitoff -
1029
ml->ml_size;
1030
else
1031
ml->ml_offset += tdesc_bitsize(ml->ml_type) -
1032
bitoff - ml->ml_size;
1033
#endif
1034
}
1035
1036
debug(3, "die %llu: mem %llu: created \"%s\" (off %u sz %u)\n",
1037
off, memoff, ml->ml_name, ml->ml_offset, ml->ml_size);
1038
1039
*mlastp = ml;
1040
mlastp = &ml->ml_next;
1041
} while ((mem = die_sibling(dw, mem)) != NULL);
1042
1043
/*
1044
* GCC will attempt to eliminate unused types, thus decreasing the
1045
* size of the emitted dwarf. That is, if you declare a foo_t in your
1046
* header, include said header in your source file, and neglect to
1047
* actually use (directly or indirectly) the foo_t in the source file,
1048
* the foo_t won't make it into the emitted DWARF. So, at least, goes
1049
* the theory.
1050
*
1051
* Occasionally, it'll emit the DW_TAG_structure_type for the foo_t,
1052
* and then neglect to emit the members. Strangely, the loner struct
1053
* tag will always be followed by a proper nested declaration of
1054
* something else. This is clearly a bug, but we're not going to have
1055
* time to get it fixed before this goo goes back, so we'll have to work
1056
* around it. If we see a no-membered struct with a nested declaration
1057
* (i.e. die_child of the struct tag won't be null), we'll ignore it.
1058
* Being paranoid, we won't simply remove it from the hash. Instead,
1059
* we'll decline to create an iidesc for it, thus ensuring that this
1060
* type won't make it into the output file. To be safe, we'll also
1061
* change the name.
1062
*/
1063
if (tdp->t_members == NULL) {
1064
const char *old = tdesc_name(tdp);
1065
size_t newsz = 7 + strlen(old) + 1;
1066
char *new = xmalloc(newsz);
1067
(void) snprintf(new, newsz, "orphan %s", old);
1068
1069
debug(3, "die %llu: worked around %s %s\n", off, typename, old);
1070
1071
if (tdp->t_name != NULL)
1072
free(tdp->t_name);
1073
tdp->t_name = new;
1074
return;
1075
}
1076
1077
out:
1078
if (tdp->t_name != NULL) {
1079
ii = xcalloc(sizeof (iidesc_t));
1080
ii->ii_type = II_SOU;
1081
ii->ii_name = xstrdup(tdp->t_name);
1082
ii->ii_dtype = tdp;
1083
1084
iidesc_add(dw->dw_td->td_iihash, ii);
1085
}
1086
}
1087
1088
static void
1089
die_struct_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp)
1090
{
1091
die_sou_create(dw, die, off, tdp, STRUCT, "struct");
1092
}
1093
1094
static void
1095
die_union_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp)
1096
{
1097
die_sou_create(dw, die, off, tdp, UNION, "union");
1098
}
1099
1100
/*ARGSUSED1*/
1101
static int
1102
die_sou_resolve(tdesc_t *tdp, tdesc_t **tdpp __unused, void *private)
1103
{
1104
dwarf_t *dw = private;
1105
mlist_t *ml;
1106
tdesc_t *mt;
1107
1108
if (tdp->t_flags & TDESC_F_RESOLVED)
1109
return (1);
1110
1111
debug(3, "resolving sou %s\n", tdesc_name(tdp));
1112
1113
for (ml = tdp->t_members; ml != NULL; ml = ml->ml_next) {
1114
if (ml->ml_size == 0) {
1115
mt = tdesc_basetype(ml->ml_type);
1116
1117
if ((ml->ml_size = tdesc_bitsize(mt)) != 0)
1118
continue;
1119
1120
/*
1121
* For empty members, or GCC/C99 flexible array
1122
* members, a size of 0 is correct. Structs and unions
1123
* consisting of flexible array members will also have
1124
* size 0.
1125
*/
1126
if (mt->t_members == NULL)
1127
continue;
1128
if (mt->t_type == ARRAY) {
1129
if (mt->t_ardef->ad_nelems == 0)
1130
continue;
1131
mt = tdesc_basetype(mt->t_ardef->ad_contents);
1132
if ((mt->t_flags & TDESC_F_RESOLVED) != 0 &&
1133
(mt->t_type == STRUCT ||
1134
mt->t_type == UNION) &&
1135
mt->t_members == NULL)
1136
continue;
1137
}
1138
if ((mt->t_flags & TDESC_F_RESOLVED) != 0 &&
1139
(mt->t_type == STRUCT || mt->t_type == UNION))
1140
continue;
1141
1142
dw->dw_nunres++;
1143
return (1);
1144
}
1145
1146
if ((mt = tdesc_basetype(ml->ml_type)) == NULL) {
1147
dw->dw_nunres++;
1148
return (1);
1149
}
1150
1151
if (ml->ml_size != 0 && mt->t_type == INTRINSIC &&
1152
mt->t_intr->intr_nbits != ml->ml_size) {
1153
/*
1154
* This member is a bitfield, and needs to reference
1155
* an intrinsic type with the same width. If the
1156
* currently-referenced type isn't of the same width,
1157
* we'll copy it, adjusting the width of the copy to
1158
* the size we'd like.
1159
*/
1160
debug(3, "tdp %u: creating bitfield for %d bits\n",
1161
tdp->t_id, ml->ml_size);
1162
1163
ml->ml_type = tdesc_intr_clone(dw, mt, ml->ml_size,
1164
"bitfield");
1165
}
1166
}
1167
1168
tdp->t_flags |= TDESC_F_RESOLVED;
1169
1170
return (1);
1171
}
1172
1173
/*ARGSUSED1*/
1174
static int
1175
die_sou_failed(tdesc_t *tdp, tdesc_t **tdpp __unused, void *private __unused)
1176
{
1177
const char *typename = (tdp->t_type == STRUCT ? "struct" : "union");
1178
mlist_t *ml;
1179
1180
if (tdp->t_flags & TDESC_F_RESOLVED)
1181
return (1);
1182
1183
for (ml = tdp->t_members; ml != NULL; ml = ml->ml_next) {
1184
if (ml->ml_size == 0) {
1185
fprintf(stderr, "%s %d <%x>: failed to size member \"%s\" "
1186
"of type %s (%d <%x>)\n", typename, tdp->t_id,
1187
tdp->t_id,
1188
ml->ml_name, tdesc_name(ml->ml_type),
1189
ml->ml_type->t_id, ml->ml_type->t_id);
1190
}
1191
}
1192
1193
return (1);
1194
}
1195
1196
static void
1197
die_funcptr_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp)
1198
{
1199
Dwarf_Attribute attr;
1200
Dwarf_Half tag;
1201
Dwarf_Die arg;
1202
fndef_t *fn;
1203
int i;
1204
1205
debug(3, "die %llu <%llx>: creating function pointer\n", off, off);
1206
1207
/*
1208
* We'll begin by processing any type definition nodes that may be
1209
* lurking underneath this one.
1210
*/
1211
for (arg = die_child(dw, die); arg != NULL;
1212
arg = die_sibling(dw, arg)) {
1213
if ((tag = die_tag(dw, arg)) != DW_TAG_formal_parameter &&
1214
tag != DW_TAG_unspecified_parameters) {
1215
/* Nested type declaration */
1216
die_create_one(dw, arg);
1217
}
1218
}
1219
1220
if (die_isdecl(dw, die)) {
1221
/*
1222
* This is a prototype. We don't add prototypes to the
1223
* tree, so we're going to drop the tdesc. Unfortunately,
1224
* it has already been added to the tree. Nobody will reference
1225
* it, though, and it will be leaked.
1226
*/
1227
return;
1228
}
1229
1230
fn = xcalloc(sizeof (fndef_t));
1231
1232
tdp->t_type = FUNCTION;
1233
1234
if ((attr = die_attr(dw, die, DW_AT_type, 0)) != NULL) {
1235
fn->fn_ret = die_lookup_pass1(dw, die, DW_AT_type);
1236
} else {
1237
fn->fn_ret = tdesc_intr_void(dw);
1238
}
1239
1240
/*
1241
* Count the arguments to the function, then read them in.
1242
*/
1243
for (fn->fn_nargs = 0, arg = die_child(dw, die); arg != NULL;
1244
arg = die_sibling(dw, arg)) {
1245
if ((tag = die_tag(dw, arg)) == DW_TAG_formal_parameter)
1246
fn->fn_nargs++;
1247
else if (tag == DW_TAG_unspecified_parameters &&
1248
fn->fn_nargs > 0)
1249
fn->fn_vargs = 1;
1250
}
1251
1252
if (fn->fn_nargs != 0) {
1253
debug(3, "die %llu: adding %d argument%s\n", off, fn->fn_nargs,
1254
(fn->fn_nargs > 1 ? "s" : ""));
1255
1256
fn->fn_args = xcalloc(sizeof (tdesc_t *) * fn->fn_nargs);
1257
for (i = 0, arg = die_child(dw, die);
1258
arg != NULL && i < (int) fn->fn_nargs;
1259
arg = die_sibling(dw, arg)) {
1260
if (die_tag(dw, arg) != DW_TAG_formal_parameter)
1261
continue;
1262
1263
fn->fn_args[i++] = die_lookup_pass1(dw, arg,
1264
DW_AT_type);
1265
}
1266
}
1267
1268
tdp->t_fndef = fn;
1269
tdp->t_flags |= TDESC_F_RESOLVED;
1270
}
1271
1272
/*
1273
* GCC and DevPro use different names for the base types. While the terms are
1274
* the same, they are arranged in a different order. Some terms, such as int,
1275
* are implied in one, and explicitly named in the other. Given a base type
1276
* as input, this routine will return a common name, along with an intr_t
1277
* that reflects said name.
1278
*/
1279
static intr_t *
1280
die_base_name_parse(const char *name, char **newp)
1281
{
1282
char buf[256];
1283
char const *base;
1284
char *c;
1285
int nlong = 0, nshort = 0, nchar = 0, nint = 0;
1286
int sign = 1;
1287
char fmt = '\0';
1288
intr_t *intr;
1289
1290
if (strlen(name) > sizeof (buf) - 1)
1291
terminate("base type name \"%s\" is too long\n", name);
1292
1293
strncpy(buf, name, sizeof (buf));
1294
1295
for (c = strtok(buf, " "); c != NULL; c = strtok(NULL, " ")) {
1296
if (strcmp(c, "signed") == 0)
1297
sign = 1;
1298
else if (strcmp(c, "unsigned") == 0)
1299
sign = 0;
1300
else if (strcmp(c, "long") == 0)
1301
nlong++;
1302
else if (strcmp(c, "char") == 0) {
1303
nchar++;
1304
fmt = 'c';
1305
} else if (strcmp(c, "short") == 0)
1306
nshort++;
1307
else if (strcmp(c, "int") == 0)
1308
nint++;
1309
else {
1310
/*
1311
* If we don't recognize any of the tokens, we'll tell
1312
* the caller to fall back to the dwarf-provided
1313
* encoding information.
1314
*/
1315
return (NULL);
1316
}
1317
}
1318
1319
if (nchar > 1 || nshort > 1 || nint > 1 || nlong > 2)
1320
return (NULL);
1321
1322
if (nchar > 0) {
1323
if (nlong > 0 || nshort > 0 || nint > 0)
1324
return (NULL);
1325
1326
base = "char";
1327
1328
} else if (nshort > 0) {
1329
if (nlong > 0)
1330
return (NULL);
1331
1332
base = "short";
1333
1334
} else if (nlong > 0) {
1335
base = "long";
1336
1337
} else {
1338
base = "int";
1339
}
1340
1341
intr = xcalloc(sizeof (intr_t));
1342
intr->intr_type = INTR_INT;
1343
intr->intr_signed = sign;
1344
intr->intr_iformat = fmt;
1345
1346
snprintf(buf, sizeof (buf), "%s%s%s",
1347
(sign ? "" : "unsigned "),
1348
(nlong > 1 ? "long " : ""),
1349
base);
1350
1351
*newp = xstrdup(buf);
1352
return (intr);
1353
}
1354
1355
typedef struct fp_size_map {
1356
size_t fsm_typesz[2]; /* size of {32,64} type */
1357
uint_t fsm_enc[3]; /* CTF_FP_* for {bare,cplx,imagry} type */
1358
} fp_size_map_t;
1359
1360
static const fp_size_map_t fp_encodings[] = {
1361
{ { 4, 4 }, { CTF_FP_SINGLE, CTF_FP_CPLX, CTF_FP_IMAGRY } },
1362
{ { 8, 8 }, { CTF_FP_DOUBLE, CTF_FP_DCPLX, CTF_FP_DIMAGRY } },
1363
#ifdef __sparc
1364
{ { 16, 16 }, { CTF_FP_LDOUBLE, CTF_FP_LDCPLX, CTF_FP_LDIMAGRY } },
1365
#else
1366
{ { 12, 16 }, { CTF_FP_LDOUBLE, CTF_FP_LDCPLX, CTF_FP_LDIMAGRY } },
1367
#endif
1368
{ { 0, 0 }, { 0, 0, 0 } }
1369
};
1370
1371
static uint_t
1372
die_base_type2enc(dwarf_t *dw, Dwarf_Off off, Dwarf_Unsigned enc, size_t sz)
1373
{
1374
const fp_size_map_t *map = fp_encodings;
1375
uint_t szidx = dw->dw_ptrsz == sizeof (uint64_t);
1376
uint_t mult = 1, col = 0;
1377
1378
if (enc == DW_ATE_complex_float) {
1379
mult = 2;
1380
col = 1;
1381
} else if (enc == DW_ATE_imaginary_float
1382
#ifdef illumos
1383
|| enc == DW_ATE_SUN_imaginary_float
1384
#endif
1385
)
1386
col = 2;
1387
1388
while (map->fsm_typesz[szidx] != 0) {
1389
if (map->fsm_typesz[szidx] * mult == sz)
1390
return (map->fsm_enc[col]);
1391
map++;
1392
}
1393
1394
terminate("die %llu: unrecognized real type size %u\n", off, sz);
1395
/*NOTREACHED*/
1396
return (0);
1397
}
1398
1399
static intr_t *
1400
die_base_from_dwarf(dwarf_t *dw, Dwarf_Die base, Dwarf_Off off, size_t sz)
1401
{
1402
intr_t *intr = xcalloc(sizeof (intr_t));
1403
Dwarf_Unsigned enc;
1404
1405
(void) die_unsigned(dw, base, DW_AT_encoding, &enc, DW_ATTR_REQ);
1406
1407
switch (enc) {
1408
case DW_ATE_unsigned:
1409
case DW_ATE_address:
1410
intr->intr_type = INTR_INT;
1411
break;
1412
case DW_ATE_unsigned_char:
1413
intr->intr_type = INTR_INT;
1414
intr->intr_iformat = 'c';
1415
break;
1416
case DW_ATE_signed:
1417
intr->intr_type = INTR_INT;
1418
intr->intr_signed = 1;
1419
break;
1420
case DW_ATE_signed_char:
1421
intr->intr_type = INTR_INT;
1422
intr->intr_signed = 1;
1423
intr->intr_iformat = 'c';
1424
break;
1425
case DW_ATE_boolean:
1426
intr->intr_type = INTR_INT;
1427
intr->intr_signed = 1;
1428
intr->intr_iformat = 'b';
1429
break;
1430
case DW_ATE_float:
1431
case DW_ATE_complex_float:
1432
case DW_ATE_imaginary_float:
1433
#ifdef illumos
1434
case DW_ATE_SUN_imaginary_float:
1435
case DW_ATE_SUN_interval_float:
1436
#endif
1437
intr->intr_type = INTR_REAL;
1438
intr->intr_signed = 1;
1439
intr->intr_fformat = die_base_type2enc(dw, off, enc, sz);
1440
break;
1441
default:
1442
terminate("die %llu: unknown base type encoding 0x%llx\n",
1443
off, enc);
1444
}
1445
1446
return (intr);
1447
}
1448
1449
static void
1450
die_base_create(dwarf_t *dw, Dwarf_Die base, Dwarf_Off off, tdesc_t *tdp)
1451
{
1452
Dwarf_Unsigned sz;
1453
intr_t *intr;
1454
char *new;
1455
1456
debug(3, "die %llu: creating base type\n", off);
1457
1458
/*
1459
* The compilers have their own clever (internally inconsistent) ideas
1460
* as to what base types should look like. Some times gcc will, for
1461
* example, use DW_ATE_signed_char for char. Other times, however, it
1462
* will use DW_ATE_signed. Needless to say, this causes some problems
1463
* down the road, particularly with merging. We do, however, use the
1464
* DWARF idea of type sizes, as this allows us to avoid caring about
1465
* the data model.
1466
*/
1467
(void) die_unsigned(dw, base, DW_AT_byte_size, &sz, DW_ATTR_REQ);
1468
1469
if (tdp->t_name == NULL)
1470
terminate("die %llu: base type without name\n", off);
1471
1472
/* XXX make a name parser for float too */
1473
if ((intr = die_base_name_parse(tdp->t_name, &new)) != NULL) {
1474
/* Found it. We'll use the parsed version */
1475
debug(3, "die %llu: name \"%s\" remapped to \"%s\"\n", off,
1476
tdesc_name(tdp), new);
1477
1478
free(tdp->t_name);
1479
tdp->t_name = new;
1480
} else {
1481
/*
1482
* We didn't recognize the type, so we'll create an intr_t
1483
* based on the DWARF data.
1484
*/
1485
debug(3, "die %llu: using dwarf data for base \"%s\"\n", off,
1486
tdesc_name(tdp));
1487
1488
intr = die_base_from_dwarf(dw, base, off, sz);
1489
}
1490
1491
intr->intr_nbits = sz * 8;
1492
1493
tdp->t_type = INTRINSIC;
1494
tdp->t_intr = intr;
1495
tdp->t_size = sz;
1496
1497
tdp->t_flags |= TDESC_F_RESOLVED;
1498
}
1499
1500
static void
1501
die_through_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp,
1502
int type, const char *typename)
1503
{
1504
Dwarf_Attribute attr;
1505
1506
debug(3, "die %llu <%llx>: creating %s type %d\n", off, off, typename, type);
1507
1508
tdp->t_type = type;
1509
1510
if ((attr = die_attr(dw, die, DW_AT_type, 0)) != NULL) {
1511
tdp->t_tdesc = die_lookup_pass1(dw, die, DW_AT_type);
1512
} else {
1513
tdp->t_tdesc = tdesc_intr_void(dw);
1514
}
1515
1516
if (type == POINTER)
1517
tdp->t_size = dw->dw_ptrsz;
1518
1519
tdp->t_flags |= TDESC_F_RESOLVED;
1520
1521
if (type == TYPEDEF) {
1522
iidesc_t *ii = xcalloc(sizeof (iidesc_t));
1523
ii->ii_type = II_TYPE;
1524
ii->ii_name = xstrdup(tdp->t_name);
1525
ii->ii_dtype = tdp;
1526
1527
iidesc_add(dw->dw_td->td_iihash, ii);
1528
}
1529
}
1530
1531
static void
1532
die_typedef_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp)
1533
{
1534
die_through_create(dw, die, off, tdp, TYPEDEF, "typedef");
1535
}
1536
1537
static void
1538
die_const_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp)
1539
{
1540
die_through_create(dw, die, off, tdp, CONST, "const");
1541
}
1542
1543
static void
1544
die_pointer_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp)
1545
{
1546
die_through_create(dw, die, off, tdp, POINTER, "pointer");
1547
}
1548
1549
static void
1550
die_restrict_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp)
1551
{
1552
die_through_create(dw, die, off, tdp, RESTRICT, "restrict");
1553
}
1554
1555
static void
1556
die_volatile_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp)
1557
{
1558
die_through_create(dw, die, off, tdp, VOLATILE, "volatile");
1559
}
1560
1561
/*ARGSUSED3*/
1562
static void
1563
die_function_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp __unused)
1564
{
1565
Dwarf_Die arg;
1566
Dwarf_Half tag;
1567
iidesc_t *ii;
1568
char *name;
1569
1570
debug(3, "die %llu <%llx>: creating function definition\n", off, off);
1571
1572
/*
1573
* We'll begin by processing any type definition nodes that may be
1574
* lurking underneath this one.
1575
*/
1576
for (arg = die_child(dw, die); arg != NULL;
1577
arg = die_sibling(dw, arg)) {
1578
if ((tag = die_tag(dw, arg)) != DW_TAG_formal_parameter &&
1579
tag != DW_TAG_variable) {
1580
/* Nested type declaration */
1581
die_create_one(dw, arg);
1582
}
1583
}
1584
1585
if (die_isdecl(dw, die) || (name = die_name(dw, die)) == NULL) {
1586
/*
1587
* We process neither prototypes nor subprograms without
1588
* names.
1589
*/
1590
return;
1591
}
1592
1593
ii = xcalloc(sizeof (iidesc_t));
1594
ii->ii_type = die_isglobal(dw, die) ? II_GFUN : II_SFUN;
1595
ii->ii_name = name;
1596
if (ii->ii_type == II_SFUN)
1597
ii->ii_owner = xstrdup(dw->dw_cuname);
1598
1599
debug(3, "die %llu: function %s is %s\n", off, ii->ii_name,
1600
(ii->ii_type == II_GFUN ? "global" : "static"));
1601
1602
if (die_attr(dw, die, DW_AT_type, 0) != NULL)
1603
ii->ii_dtype = die_lookup_pass1(dw, die, DW_AT_type);
1604
else
1605
ii->ii_dtype = tdesc_intr_void(dw);
1606
1607
for (arg = die_child(dw, die); arg != NULL;
1608
arg = die_sibling(dw, arg)) {
1609
char *name1;
1610
1611
debug(3, "die %llu: looking at sub member at %llu\n",
1612
off, die_off(dw, die));
1613
1614
if (die_tag(dw, arg) != DW_TAG_formal_parameter)
1615
continue;
1616
1617
if ((name1 = die_name(dw, arg)) == NULL) {
1618
terminate("die %llu: func arg %d has no name\n",
1619
off, ii->ii_nargs + 1);
1620
}
1621
1622
if (strcmp(name1, "...") == 0) {
1623
free(name1);
1624
ii->ii_vargs = 1;
1625
continue;
1626
}
1627
free(name1);
1628
1629
ii->ii_nargs++;
1630
}
1631
1632
if (ii->ii_nargs > 0) {
1633
int i;
1634
1635
debug(3, "die %llu: function has %d argument%s\n", off,
1636
ii->ii_nargs, (ii->ii_nargs == 1 ? "" : "s"));
1637
1638
ii->ii_args = xcalloc(sizeof (tdesc_t) * ii->ii_nargs);
1639
1640
for (arg = die_child(dw, die), i = 0;
1641
arg != NULL && i < ii->ii_nargs;
1642
arg = die_sibling(dw, arg)) {
1643
if (die_tag(dw, arg) != DW_TAG_formal_parameter)
1644
continue;
1645
1646
ii->ii_args[i++] = die_lookup_pass1(dw, arg,
1647
DW_AT_type);
1648
}
1649
}
1650
1651
iidesc_add(dw->dw_td->td_iihash, ii);
1652
}
1653
1654
/*ARGSUSED3*/
1655
static void
1656
die_variable_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp __unused)
1657
{
1658
iidesc_t *ii;
1659
char *name;
1660
1661
debug(3, "die %llu: creating object definition\n", off);
1662
1663
if (die_isdecl(dw, die) || (name = die_name(dw, die)) == NULL)
1664
return; /* skip prototypes and nameless objects */
1665
1666
ii = xcalloc(sizeof (iidesc_t));
1667
ii->ii_type = die_isglobal(dw, die) ? II_GVAR : II_SVAR;
1668
ii->ii_name = name;
1669
ii->ii_dtype = die_lookup_pass1(dw, die, DW_AT_type);
1670
if (ii->ii_type == II_SVAR)
1671
ii->ii_owner = xstrdup(dw->dw_cuname);
1672
1673
iidesc_add(dw->dw_td->td_iihash, ii);
1674
}
1675
1676
/*ARGSUSED2*/
1677
static int
1678
die_fwd_resolve(tdesc_t *fwd, tdesc_t **fwdp, void *private __unused)
1679
{
1680
if (fwd->t_flags & TDESC_F_RESOLVED)
1681
return (1);
1682
1683
if (fwd->t_tdesc != NULL) {
1684
debug(3, "tdp %u: unforwarded %s\n", fwd->t_id,
1685
tdesc_name(fwd));
1686
*fwdp = fwd->t_tdesc;
1687
}
1688
1689
fwd->t_flags |= TDESC_F_RESOLVED;
1690
1691
return (1);
1692
}
1693
1694
/*ARGSUSED*/
1695
static void
1696
die_lexblk_descend(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off __unused, tdesc_t *tdp __unused)
1697
{
1698
Dwarf_Die child = die_child(dw, die);
1699
1700
if (child != NULL)
1701
die_create(dw, child);
1702
}
1703
1704
/*
1705
* Used to map the die to a routine which can parse it, using the tag to do the
1706
* mapping. While the processing of most tags entails the creation of a tdesc,
1707
* there are a few which don't - primarily those which result in the creation of
1708
* iidescs which refer to existing tdescs.
1709
*/
1710
1711
#define DW_F_NOTDP 0x1 /* Don't create a tdesc for the creator */
1712
1713
typedef struct die_creator {
1714
Dwarf_Half dc_tag;
1715
uint16_t dc_flags;
1716
void (*dc_create)(dwarf_t *, Dwarf_Die, Dwarf_Off, tdesc_t *);
1717
} die_creator_t;
1718
1719
static const die_creator_t die_creators[] = {
1720
{ DW_TAG_array_type, 0, die_array_create },
1721
{ DW_TAG_enumeration_type, 0, die_enum_create },
1722
{ DW_TAG_lexical_block, DW_F_NOTDP, die_lexblk_descend },
1723
{ DW_TAG_pointer_type, 0, die_pointer_create },
1724
{ DW_TAG_structure_type, 0, die_struct_create },
1725
{ DW_TAG_subroutine_type, 0, die_funcptr_create },
1726
{ DW_TAG_typedef, 0, die_typedef_create },
1727
{ DW_TAG_union_type, 0, die_union_create },
1728
{ DW_TAG_base_type, 0, die_base_create },
1729
{ DW_TAG_const_type, 0, die_const_create },
1730
{ DW_TAG_subprogram, DW_F_NOTDP, die_function_create },
1731
{ DW_TAG_variable, DW_F_NOTDP, die_variable_create },
1732
{ DW_TAG_volatile_type, 0, die_volatile_create },
1733
{ DW_TAG_restrict_type, 0, die_restrict_create },
1734
{ 0, 0, NULL }
1735
};
1736
1737
static const die_creator_t *
1738
die_tag2ctor(Dwarf_Half tag)
1739
{
1740
const die_creator_t *dc;
1741
1742
for (dc = die_creators; dc->dc_create != NULL; dc++) {
1743
if (dc->dc_tag == tag)
1744
return (dc);
1745
}
1746
1747
return (NULL);
1748
}
1749
1750
static void
1751
die_create_one(dwarf_t *dw, Dwarf_Die die)
1752
{
1753
Dwarf_Off off = die_off(dw, die);
1754
const die_creator_t *dc;
1755
Dwarf_Half tag;
1756
tdesc_t *tdp;
1757
1758
debug(3, "die %llu <%llx>: create_one\n", off, off);
1759
1760
if (off > dw->dw_maxoff) {
1761
terminate("illegal die offset %llu (max %llu)\n", off,
1762
dw->dw_maxoff);
1763
}
1764
1765
tag = die_tag(dw, die);
1766
1767
if ((dc = die_tag2ctor(tag)) == NULL) {
1768
debug(2, "die %llu: ignoring tag type %x\n", off, tag);
1769
return;
1770
}
1771
1772
if ((tdp = tdesc_lookup(dw, off)) == NULL &&
1773
!(dc->dc_flags & DW_F_NOTDP)) {
1774
tdp = xcalloc(sizeof (tdesc_t));
1775
tdp->t_id = off;
1776
tdesc_add(dw, tdp);
1777
}
1778
1779
if (tdp != NULL)
1780
tdp->t_name = die_name(dw, die);
1781
1782
dc->dc_create(dw, die, off, tdp);
1783
}
1784
1785
static void
1786
die_create(dwarf_t *dw, Dwarf_Die die)
1787
{
1788
do {
1789
die_create_one(dw, die);
1790
} while ((die = die_sibling(dw, die)) != NULL);
1791
}
1792
1793
static tdtrav_cb_f die_resolvers[] = {
1794
NULL,
1795
NULL, /* intrinsic */
1796
NULL, /* pointer */
1797
die_array_resolve, /* array */
1798
NULL, /* function */
1799
die_sou_resolve, /* struct */
1800
die_sou_resolve, /* union */
1801
die_enum_resolve, /* enum */
1802
die_fwd_resolve, /* forward */
1803
NULL, /* typedef */
1804
NULL, /* typedef unres */
1805
NULL, /* volatile */
1806
NULL, /* const */
1807
NULL, /* restrict */
1808
};
1809
1810
static tdtrav_cb_f die_fail_reporters[] = {
1811
NULL,
1812
NULL, /* intrinsic */
1813
NULL, /* pointer */
1814
die_array_failed, /* array */
1815
NULL, /* function */
1816
die_sou_failed, /* struct */
1817
die_sou_failed, /* union */
1818
NULL, /* enum */
1819
NULL, /* forward */
1820
NULL, /* typedef */
1821
NULL, /* typedef unres */
1822
NULL, /* volatile */
1823
NULL, /* const */
1824
NULL, /* restrict */
1825
};
1826
1827
static void
1828
die_resolve(dwarf_t *dw)
1829
{
1830
int last = -1;
1831
int pass = 0;
1832
1833
do {
1834
pass++;
1835
dw->dw_nunres = 0;
1836
1837
(void) iitraverse_hash(dw->dw_td->td_iihash,
1838
&dw->dw_td->td_curvgen, NULL, NULL, die_resolvers, dw);
1839
1840
debug(3, "resolve: pass %d, %u left\n", pass, dw->dw_nunres);
1841
1842
if ((int) dw->dw_nunres == last) {
1843
fprintf(stderr, "%s: failed to resolve the following "
1844
"types:\n", progname);
1845
1846
(void) iitraverse_hash(dw->dw_td->td_iihash,
1847
&dw->dw_td->td_curvgen, NULL, NULL,
1848
die_fail_reporters, dw);
1849
1850
terminate("failed to resolve types\n");
1851
}
1852
1853
last = dw->dw_nunres;
1854
1855
} while (dw->dw_nunres != 0);
1856
}
1857
1858
/*
1859
* Any object containing a function or object symbol at any scope should also
1860
* contain DWARF data.
1861
*/
1862
static boolean_t
1863
should_have_dwarf(Elf *elf)
1864
{
1865
Elf_Scn *scn = NULL;
1866
Elf_Data *data = NULL;
1867
GElf_Shdr shdr;
1868
GElf_Sym sym;
1869
uint32_t symdx = 0;
1870
size_t nsyms = 0;
1871
boolean_t found = B_FALSE;
1872
1873
while ((scn = elf_nextscn(elf, scn)) != NULL) {
1874
gelf_getshdr(scn, &shdr);
1875
1876
if (shdr.sh_type == SHT_SYMTAB) {
1877
found = B_TRUE;
1878
break;
1879
}
1880
}
1881
1882
if (!found)
1883
terminate("cannot convert stripped objects\n");
1884
1885
data = elf_getdata(scn, NULL);
1886
nsyms = shdr.sh_size / shdr.sh_entsize;
1887
1888
for (symdx = 0; symdx < nsyms; symdx++) {
1889
gelf_getsym(data, symdx, &sym);
1890
1891
if ((GELF_ST_TYPE(sym.st_info) == STT_FUNC) ||
1892
(GELF_ST_TYPE(sym.st_info) == STT_TLS) ||
1893
(GELF_ST_TYPE(sym.st_info) == STT_OBJECT)) {
1894
char *name;
1895
1896
name = elf_strptr(elf, shdr.sh_link, sym.st_name);
1897
1898
/* Studio emits these local symbols regardless */
1899
if ((strcmp(name, "Bbss.bss") != 0) &&
1900
(strcmp(name, "Ttbss.bss") != 0) &&
1901
(strcmp(name, "Ddata.data") != 0) &&
1902
(strcmp(name, "Ttdata.data") != 0) &&
1903
(strcmp(name, "Drodata.rodata") != 0))
1904
return (B_TRUE);
1905
}
1906
}
1907
1908
return (B_FALSE);
1909
}
1910
1911
/*ARGSUSED*/
1912
int
1913
dw_read(tdata_t *td, Elf *elf, char *filename __unused)
1914
{
1915
Dwarf_Unsigned abboff, hdrlen, lang, nxthdr;
1916
Dwarf_Half vers, addrsz, offsz;
1917
Dwarf_Die cu = 0;
1918
Dwarf_Die child = 0;
1919
dwarf_t dw;
1920
char *prod = NULL;
1921
int rc;
1922
1923
bzero(&dw, sizeof (dwarf_t));
1924
dw.dw_td = td;
1925
dw.dw_ptrsz = elf_ptrsz(elf);
1926
dw.dw_mfgtid_last = TID_MFGTID_BASE;
1927
dw.dw_tidhash = hash_new(TDESC_HASH_BUCKETS, tdesc_idhash, tdesc_idcmp);
1928
dw.dw_fwdhash = hash_new(TDESC_HASH_BUCKETS, tdesc_namehash,
1929
tdesc_namecmp);
1930
dw.dw_enumhash = hash_new(TDESC_HASH_BUCKETS, tdesc_namehash,
1931
tdesc_namecmp);
1932
1933
if ((rc = dwarf_elf_init(elf, DW_DLC_READ, NULL, NULL, &dw.dw_dw,
1934
&dw.dw_err)) == DW_DLV_NO_ENTRY) {
1935
if (should_have_dwarf(elf)) {
1936
errno = ENOENT;
1937
return (-1);
1938
} else {
1939
return (0);
1940
}
1941
} else if (rc != DW_DLV_OK) {
1942
if (dwarf_errno(dw.dw_err) == DW_DLE_DEBUG_INFO_NULL) {
1943
/*
1944
* There's no type data in the DWARF section, but
1945
* libdwarf is too clever to handle that properly.
1946
*/
1947
return (0);
1948
}
1949
1950
terminate("failed to initialize DWARF: %s\n",
1951
dwarf_errmsg(dw.dw_err));
1952
}
1953
1954
if ((rc = dwarf_next_cu_header_b(dw.dw_dw, &hdrlen, &vers, &abboff,
1955
&addrsz, &offsz, NULL, &nxthdr, &dw.dw_err)) != DW_DLV_OK) {
1956
if (dw.dw_err.err_error == DW_DLE_NO_ENTRY)
1957
exit(0);
1958
else
1959
terminate("rc = %d %s\n", rc, dwarf_errmsg(dw.dw_err));
1960
}
1961
if ((cu = die_sibling(&dw, NULL)) == NULL ||
1962
(((child = die_child(&dw, cu)) == NULL) &&
1963
should_have_dwarf(elf))) {
1964
terminate("file does not contain dwarf type data "
1965
"(try compiling with -g)\n");
1966
} else if (child == NULL) {
1967
return (0);
1968
}
1969
1970
dw.dw_maxoff = nxthdr - 1;
1971
1972
if (dw.dw_maxoff > TID_FILEMAX)
1973
terminate("file contains too many types\n");
1974
1975
debug(1, "DWARF version: %d\n", vers);
1976
if (vers < 2 || vers > 4) {
1977
terminate("file contains incompatible version %d DWARF code "
1978
"(version 2, 3 or 4 required)\n", vers);
1979
}
1980
1981
if (die_string(&dw, cu, DW_AT_producer, &prod, 0)) {
1982
debug(1, "DWARF emitter: %s\n", prod);
1983
free(prod);
1984
}
1985
1986
if (dwarf_attrval_unsigned(cu, DW_AT_language, &lang, &dw.dw_err) == 0)
1987
switch (lang) {
1988
case DW_LANG_C:
1989
case DW_LANG_C89:
1990
case DW_LANG_C99:
1991
case DW_LANG_C11:
1992
case DW_LANG_C_plus_plus:
1993
case DW_LANG_C_plus_plus_03:
1994
case DW_LANG_C_plus_plus_11:
1995
case DW_LANG_C_plus_plus_14:
1996
case DW_LANG_Mips_Assembler:
1997
break;
1998
default:
1999
terminate("file contains DWARF for unsupported "
2000
"language %#x", lang);
2001
}
2002
else
2003
warning("die %llu: failed to get language attribute: %s\n",
2004
die_off(&dw, cu), dwarf_errmsg(dw.dw_err));
2005
2006
if ((dw.dw_cuname = die_name(&dw, cu)) != NULL) {
2007
char *base = xstrdup(basename(dw.dw_cuname));
2008
free(dw.dw_cuname);
2009
dw.dw_cuname = base;
2010
2011
debug(1, "CU name: %s\n", dw.dw_cuname);
2012
}
2013
2014
if ((child = die_child(&dw, cu)) != NULL)
2015
die_create(&dw, child);
2016
2017
if ((rc = dwarf_next_cu_header_b(dw.dw_dw, &hdrlen, &vers, &abboff,
2018
&addrsz, &offsz, NULL, &nxthdr, &dw.dw_err)) != DW_DLV_NO_ENTRY)
2019
terminate("multiple compilation units not supported\n");
2020
2021
(void) dwarf_finish(dw.dw_dw, &dw.dw_err);
2022
2023
die_resolve(&dw);
2024
2025
cvt_fixups(td, dw.dw_ptrsz);
2026
2027
/* leak the dwarf_t */
2028
2029
return (0);
2030
}
2031
2032