Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/cddl/contrib/opensolaris/tools/ctf/cvt/merge.c
39458 views
1
/*
2
* CDDL HEADER START
3
*
4
* The contents of this file are subject to the terms of the
5
* Common Development and Distribution License (the "License").
6
* You may not use this file except in compliance with the License.
7
*
8
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9
* or http://www.opensolaris.org/os/licensing.
10
* See the License for the specific language governing permissions
11
* and limitations under the License.
12
*
13
* When distributing Covered Code, include this CDDL HEADER in each
14
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15
* If applicable, add the following below this CDDL HEADER, with the
16
* fields enclosed by brackets "[]" replaced with your own identifying
17
* information: Portions Copyright [yyyy] [name of copyright owner]
18
*
19
* CDDL HEADER END
20
*/
21
/*
22
* Copyright 2006 Sun Microsystems, Inc. All rights reserved.
23
* Use is subject to license terms.
24
*/
25
26
#pragma ident "%Z%%M% %I% %E% SMI"
27
28
/*
29
* This file contains routines that merge one tdata_t tree, called the child,
30
* into another, called the parent. Note that these names are used mainly for
31
* convenience and to represent the direction of the merge. They are not meant
32
* to imply any relationship between the tdata_t graphs prior to the merge.
33
*
34
* tdata_t structures contain two main elements - a hash of iidesc_t nodes, and
35
* a directed graph of tdesc_t nodes, pointed to by the iidesc_t nodes. Simply
36
* put, we merge the tdesc_t graphs, followed by the iidesc_t nodes, and then we
37
* clean up loose ends.
38
*
39
* The algorithm is as follows:
40
*
41
* 1. Mapping iidesc_t nodes
42
*
43
* For each child iidesc_t node, we first try to map its tdesc_t subgraph
44
* against the tdesc_t graph in the parent. For each node in the child subgraph
45
* that exists in the parent, a mapping between the two (between their type IDs)
46
* is established. For the child nodes that cannot be mapped onto existing
47
* parent nodes, a mapping is established between the child node ID and a
48
* newly-allocated ID that the node will use when it is re-created in the
49
* parent. These unmappable nodes are added to the md_tdtba (tdesc_t To Be
50
* Added) hash, which tracks nodes that need to be created in the parent.
51
*
52
* If all of the nodes in the subgraph for an iidesc_t in the child can be
53
* mapped to existing nodes in the parent, then we can try to map the child
54
* iidesc_t onto an iidesc_t in the parent. If we cannot find an equivalent
55
* iidesc_t, or if we were not able to completely map the tdesc_t subgraph(s),
56
* then we add this iidesc_t to the md_iitba (iidesc_t To Be Added) list. This
57
* list tracks iidesc_t nodes that are to be created in the parent.
58
*
59
* While visiting the tdesc_t nodes, we may discover a forward declaration (a
60
* FORWARD tdesc_t) in the parent that is resolved in the child. That is, there
61
* may be a structure or union definition in the child with the same name as the
62
* forward declaration in the parent. If we find such a node, we record an
63
* association in the md_fdida (Forward => Definition ID Association) list
64
* between the parent ID of the forward declaration and the ID that the
65
* definition will use when re-created in the parent.
66
*
67
* 2. Creating new tdesc_t nodes (the md_tdtba hash)
68
*
69
* We have now attempted to map all tdesc_t nodes from the child into the
70
* parent, and have, in md_tdtba, a hash of all tdesc_t nodes that need to be
71
* created (or, as we so wittily call it, conjured) in the parent. We iterate
72
* through this hash, creating the indicated tdesc_t nodes. For a given tdesc_t
73
* node, conjuring requires two steps - the copying of the common tdesc_t data
74
* (name, type, etc) from the child node, and the creation of links from the
75
* newly-created node to the parent equivalents of other tdesc_t nodes pointed
76
* to by node being conjured. Note that in some cases, the targets of these
77
* links will be on the md_tdtba hash themselves, and may not have been created
78
* yet. As such, we can't establish the links from these new nodes into the
79
* parent graph. We therefore conjure them with links to nodes in the *child*
80
* graph, and add pointers to the links to be created to the md_tdtbr (tdesc_t
81
* To Be Remapped) hash. For example, a POINTER tdesc_t that could not be
82
* resolved would have its &tdesc_t->t_tdesc added to md_tdtbr.
83
*
84
* 3. Creating new iidesc_t nodes (the md_iitba list)
85
*
86
* When we have completed step 2, all tdesc_t nodes have been created (or
87
* already existed) in the parent. Some of them may have incorrect links (the
88
* members of the md_tdtbr list), but they've all been created. As such, we can
89
* create all of the iidesc_t nodes, as we can attach the tdesc_t subgraph
90
* pointers correctly. We create each node, and attach the pointers to the
91
* appropriate parts of the parent tdesc_t graph.
92
*
93
* 4. Resolving newly-created tdesc_t node links (the md_tdtbr list)
94
*
95
* As in step 3, we rely on the fact that all of the tdesc_t nodes have been
96
* created. Each entry in the md_tdtbr list is a pointer to where a link into
97
* the parent will be established. As saved in the md_tdtbr list, these
98
* pointers point into the child tdesc_t subgraph. We can thus get the target
99
* type ID from the child, look at the ID mapping to determine the desired link
100
* target, and redirect the link accordingly.
101
*
102
* 5. Parent => child forward declaration resolution
103
*
104
* If entries were made in the md_fdida list in step 1, we have forward
105
* declarations in the parent that need to be resolved to their definitions
106
* re-created in step 2 from the child. Using the md_fdida list, we can locate
107
* the definition for the forward declaration, and we can redirect all inbound
108
* edges to the forward declaration node to the actual definition.
109
*
110
* A pox on the house of anyone who changes the algorithm without updating
111
* this comment.
112
*/
113
114
#include <stdio.h>
115
#include <strings.h>
116
#include <assert.h>
117
#include <pthread.h>
118
119
#include "ctf_headers.h"
120
#include "ctftools.h"
121
#include "list.h"
122
#include "alist.h"
123
#include "memory.h"
124
#include "traverse.h"
125
126
typedef struct equiv_data equiv_data_t;
127
typedef struct merge_cb_data merge_cb_data_t;
128
129
/*
130
* There are two traversals in this file, for equivalency and for tdesc_t
131
* re-creation, that do not fit into the tdtraverse() framework. We have our
132
* own traversal mechanism and ops vector here for those two cases.
133
*/
134
typedef struct tdesc_ops {
135
const char *name;
136
int (*equiv)(tdesc_t *, tdesc_t *, equiv_data_t *);
137
tdesc_t *(*conjure)(tdesc_t *, int, merge_cb_data_t *);
138
} tdesc_ops_t;
139
extern tdesc_ops_t tdesc_ops[];
140
141
/*
142
* The workhorse structure of tdata_t merging. Holds all lists of nodes to be
143
* processed during various phases of the merge algorithm.
144
*/
145
struct merge_cb_data {
146
tdata_t *md_parent;
147
tdata_t *md_tgt;
148
alist_t *md_ta; /* Type Association */
149
alist_t *md_fdida; /* Forward -> Definition ID Association */
150
list_t **md_iitba; /* iidesc_t nodes To Be Added to the parent */
151
hash_t *md_tdtba; /* tdesc_t nodes To Be Added to the parent */
152
list_t **md_tdtbr; /* tdesc_t nodes To Be Remapped */
153
int md_flags;
154
}; /* merge_cb_data_t */
155
156
/*
157
* When we first create a tdata_t from stabs data, we will have duplicate nodes.
158
* Normal merges, however, assume that the child tdata_t is already self-unique,
159
* and for speed reasons do not attempt to self-uniquify. If this flag is set,
160
* the merge algorithm will self-uniquify by avoiding the insertion of
161
* duplicates in the md_tdtdba list.
162
*/
163
#define MCD_F_SELFUNIQUIFY 0x1
164
165
/*
166
* When we merge the CTF data for the modules, we don't want it to contain any
167
* data that can be found in the reference module (usually genunix). If this
168
* flag is set, we're doing a merge between the fully merged tdata_t for this
169
* module and the tdata_t for the reference module, with the data unique to this
170
* module ending up in a third tdata_t. It is this third tdata_t that will end
171
* up in the .SUNW_ctf section for the module.
172
*/
173
#define MCD_F_REFMERGE 0x2
174
175
/*
176
* Mapping of child type IDs to parent type IDs
177
*/
178
179
static void
180
add_mapping(alist_t *ta, tid_t srcid, tid_t tgtid)
181
{
182
debug(3, "Adding mapping %u <%x> => %u <%x>\n", srcid, srcid, tgtid, tgtid);
183
184
assert(!alist_find(ta, (void *)(uintptr_t)srcid, NULL));
185
assert(srcid != 0 && tgtid != 0);
186
187
alist_add(ta, (void *)(uintptr_t)srcid, (void *)(uintptr_t)tgtid);
188
}
189
190
static tid_t
191
get_mapping(alist_t *ta, int srcid)
192
{
193
void *ltgtid;
194
195
if (alist_find(ta, (void *)(uintptr_t)srcid, (void **)&ltgtid))
196
return ((uintptr_t)ltgtid);
197
else
198
return (0);
199
}
200
201
/*
202
* Determining equivalence of tdesc_t subgraphs
203
*/
204
205
struct equiv_data {
206
alist_t *ed_ta;
207
tdesc_t *ed_node;
208
tdesc_t *ed_tgt;
209
210
int ed_clear_mark;
211
int ed_cur_mark;
212
int ed_selfuniquify;
213
}; /* equiv_data_t */
214
215
static int equiv_node(tdesc_t *, tdesc_t *, equiv_data_t *);
216
217
/*ARGSUSED2*/
218
static int
219
equiv_intrinsic(tdesc_t *stdp, tdesc_t *ttdp, equiv_data_t *ed __unused)
220
{
221
intr_t *si = stdp->t_intr;
222
intr_t *ti = ttdp->t_intr;
223
224
if (si->intr_type != ti->intr_type ||
225
si->intr_signed != ti->intr_signed ||
226
si->intr_offset != ti->intr_offset ||
227
si->intr_nbits != ti->intr_nbits)
228
return (0);
229
230
if (si->intr_type == INTR_INT &&
231
si->intr_iformat != ti->intr_iformat)
232
return (0);
233
else if (si->intr_type == INTR_REAL &&
234
si->intr_fformat != ti->intr_fformat)
235
return (0);
236
237
return (1);
238
}
239
240
static int
241
equiv_plain(tdesc_t *stdp, tdesc_t *ttdp, equiv_data_t *ed)
242
{
243
return (equiv_node(stdp->t_tdesc, ttdp->t_tdesc, ed));
244
}
245
246
static int
247
equiv_function(tdesc_t *stdp, tdesc_t *ttdp, equiv_data_t *ed)
248
{
249
fndef_t *fn1 = stdp->t_fndef, *fn2 = ttdp->t_fndef;
250
int i;
251
252
if (fn1->fn_nargs != fn2->fn_nargs ||
253
fn1->fn_vargs != fn2->fn_vargs)
254
return (0);
255
256
if (!equiv_node(fn1->fn_ret, fn2->fn_ret, ed))
257
return (0);
258
259
for (i = 0; i < (int) fn1->fn_nargs; i++) {
260
if (!equiv_node(fn1->fn_args[i], fn2->fn_args[i], ed))
261
return (0);
262
}
263
264
return (1);
265
}
266
267
static int
268
equiv_array(tdesc_t *stdp, tdesc_t *ttdp, equiv_data_t *ed)
269
{
270
ardef_t *ar1 = stdp->t_ardef, *ar2 = ttdp->t_ardef;
271
272
if (!equiv_node(ar1->ad_contents, ar2->ad_contents, ed) ||
273
!equiv_node(ar1->ad_idxtype, ar2->ad_idxtype, ed))
274
return (0);
275
276
if (ar1->ad_nelems != ar2->ad_nelems)
277
return (0);
278
279
return (1);
280
}
281
282
static int
283
equiv_su(tdesc_t *stdp, tdesc_t *ttdp, equiv_data_t *ed)
284
{
285
mlist_t *ml1 = stdp->t_members, *ml2 = ttdp->t_members;
286
287
while (ml1 && ml2) {
288
if (ml1->ml_offset != ml2->ml_offset ||
289
strcmp(ml1->ml_name, ml2->ml_name) != 0 ||
290
ml1->ml_size != ml2->ml_size ||
291
!equiv_node(ml1->ml_type, ml2->ml_type, ed))
292
return (0);
293
294
ml1 = ml1->ml_next;
295
ml2 = ml2->ml_next;
296
}
297
298
if (ml1 || ml2)
299
return (0);
300
301
return (1);
302
}
303
304
/*ARGSUSED2*/
305
static int
306
equiv_enum(tdesc_t *stdp, tdesc_t *ttdp, equiv_data_t *ed __unused)
307
{
308
elist_t *el1 = stdp->t_emem;
309
elist_t *el2 = ttdp->t_emem;
310
311
while (el1 && el2) {
312
if (el1->el_number != el2->el_number ||
313
strcmp(el1->el_name, el2->el_name) != 0)
314
return (0);
315
316
el1 = el1->el_next;
317
el2 = el2->el_next;
318
}
319
320
if (el1 || el2)
321
return (0);
322
323
return (1);
324
}
325
326
/*ARGSUSED*/
327
static int
328
equiv_assert(tdesc_t *stdp __unused, tdesc_t *ttdp __unused, equiv_data_t *ed __unused)
329
{
330
/* foul, evil, and very bad - this is a "shouldn't happen" */
331
assert(1 == 0);
332
333
return (0);
334
}
335
336
static int
337
fwd_equiv(tdesc_t *ctdp, tdesc_t *mtdp)
338
{
339
tdesc_t *defn = (ctdp->t_type == FORWARD ? mtdp : ctdp);
340
341
return (defn->t_type == STRUCT || defn->t_type == UNION ||
342
defn->t_type == ENUM);
343
}
344
345
static int
346
equiv_node(tdesc_t *ctdp, tdesc_t *mtdp, equiv_data_t *ed)
347
{
348
int (*equiv)(tdesc_t *, tdesc_t *, equiv_data_t *);
349
int mapping;
350
351
if (ctdp->t_emark > ed->ed_clear_mark &&
352
mtdp->t_emark > ed->ed_clear_mark)
353
return (ctdp->t_emark == mtdp->t_emark);
354
355
/*
356
* In normal (non-self-uniquify) mode, we don't want to do equivalency
357
* checking on a subgraph that has already been checked. If a mapping
358
* has already been established for a given child node, we can simply
359
* compare the mapping for the child node with the ID of the parent
360
* node. If we are in self-uniquify mode, then we're comparing two
361
* subgraphs within the child graph, and thus need to ignore any
362
* type mappings that have been created, as they are only valid into the
363
* parent.
364
*/
365
if ((mapping = get_mapping(ed->ed_ta, ctdp->t_id)) > 0 &&
366
mapping == mtdp->t_id && !ed->ed_selfuniquify)
367
return (1);
368
369
if (!streq(ctdp->t_name, mtdp->t_name))
370
return (0);
371
372
if (ctdp->t_type != mtdp->t_type) {
373
if (ctdp->t_type == FORWARD || mtdp->t_type == FORWARD)
374
return (fwd_equiv(ctdp, mtdp));
375
else
376
return (0);
377
}
378
379
ctdp->t_emark = ed->ed_cur_mark;
380
mtdp->t_emark = ed->ed_cur_mark;
381
ed->ed_cur_mark++;
382
383
if ((equiv = tdesc_ops[ctdp->t_type].equiv) != NULL)
384
return (equiv(ctdp, mtdp, ed));
385
386
return (1);
387
}
388
389
/*
390
* We perform an equivalency check on two subgraphs by traversing through them
391
* in lockstep. If a given node is equivalent in both the parent and the child,
392
* we mark it in both subgraphs, using the t_emark field, with a monotonically
393
* increasing number. If, in the course of the traversal, we reach a node that
394
* we have visited and numbered during this equivalency check, we have a cycle.
395
* If the previously-visited nodes don't have the same emark, then the edges
396
* that brought us to these nodes are not equivalent, and so the check ends.
397
* If the emarks are the same, the edges are equivalent. We then backtrack and
398
* continue the traversal. If we have exhausted all edges in the subgraph, and
399
* have not found any inequivalent nodes, then the subgraphs are equivalent.
400
*/
401
static int
402
equiv_cb(void *bucket, void *arg)
403
{
404
equiv_data_t *ed = arg;
405
tdesc_t *mtdp = bucket;
406
tdesc_t *ctdp = ed->ed_node;
407
408
ed->ed_clear_mark = ed->ed_cur_mark + 1;
409
ed->ed_cur_mark = ed->ed_clear_mark + 1;
410
411
if (equiv_node(ctdp, mtdp, ed)) {
412
debug(3, "equiv_node matched %d <%x> %d <%x>\n",
413
ctdp->t_id, ctdp->t_id, mtdp->t_id, mtdp->t_id);
414
ed->ed_tgt = mtdp;
415
/* matched. stop looking */
416
return (-1);
417
}
418
419
return (0);
420
}
421
422
/*ARGSUSED1*/
423
static int
424
map_td_tree_pre(tdesc_t *ctdp, tdesc_t **ctdpp __unused, void *private)
425
{
426
merge_cb_data_t *mcd = private;
427
428
if (get_mapping(mcd->md_ta, ctdp->t_id) > 0)
429
return (0);
430
431
return (1);
432
}
433
434
/*ARGSUSED1*/
435
static int
436
map_td_tree_post(tdesc_t *ctdp, tdesc_t **ctdpp __unused, void *private)
437
{
438
merge_cb_data_t *mcd = private;
439
equiv_data_t ed;
440
441
ed.ed_ta = mcd->md_ta;
442
ed.ed_clear_mark = mcd->md_parent->td_curemark;
443
ed.ed_cur_mark = mcd->md_parent->td_curemark + 1;
444
ed.ed_node = ctdp;
445
ed.ed_selfuniquify = 0;
446
447
debug(3, "map_td_tree_post on %d <%x> %s\n", ctdp->t_id, ctdp->t_id,tdesc_name(ctdp));
448
449
if (hash_find_iter(mcd->md_parent->td_layouthash, ctdp,
450
equiv_cb, &ed) < 0) {
451
/* We found an equivalent node */
452
if (ed.ed_tgt->t_type == FORWARD && ctdp->t_type != FORWARD) {
453
int id = mcd->md_tgt->td_nextid++;
454
455
debug(3, "Creating new defn type %d <%x>\n", id, id);
456
add_mapping(mcd->md_ta, ctdp->t_id, id);
457
alist_add(mcd->md_fdida, (void *)(ulong_t)ed.ed_tgt,
458
(void *)(ulong_t)id);
459
hash_add(mcd->md_tdtba, ctdp);
460
} else
461
add_mapping(mcd->md_ta, ctdp->t_id, ed.ed_tgt->t_id);
462
463
} else if (debug_level > 1 && hash_iter(mcd->md_parent->td_idhash,
464
equiv_cb, &ed) < 0) {
465
/*
466
* We didn't find an equivalent node by looking through the
467
* layout hash, but we somehow found it by performing an
468
* exhaustive search through the entire graph. This usually
469
* means that the "name" hash function is broken.
470
*/
471
aborterr("Second pass for %d (%s) == %d\n", ctdp->t_id,
472
tdesc_name(ctdp), ed.ed_tgt->t_id);
473
} else {
474
int id = mcd->md_tgt->td_nextid++;
475
476
debug(3, "Creating new type %d <%x>\n", id, id);
477
add_mapping(mcd->md_ta, ctdp->t_id, id);
478
hash_add(mcd->md_tdtba, ctdp);
479
}
480
481
mcd->md_parent->td_curemark = ed.ed_cur_mark + 1;
482
483
return (1);
484
}
485
486
/*ARGSUSED1*/
487
static int
488
map_td_tree_self_post(tdesc_t *ctdp, tdesc_t **ctdpp __unused, void *private)
489
{
490
merge_cb_data_t *mcd = private;
491
equiv_data_t ed;
492
493
ed.ed_ta = mcd->md_ta;
494
ed.ed_clear_mark = mcd->md_parent->td_curemark;
495
ed.ed_cur_mark = mcd->md_parent->td_curemark + 1;
496
ed.ed_node = ctdp;
497
ed.ed_selfuniquify = 1;
498
ed.ed_tgt = NULL;
499
500
if (hash_find_iter(mcd->md_tdtba, ctdp, equiv_cb, &ed) < 0) {
501
debug(3, "Self check found %d <%x> in %d <%x>\n", ctdp->t_id,
502
ctdp->t_id, ed.ed_tgt->t_id, ed.ed_tgt->t_id);
503
add_mapping(mcd->md_ta, ctdp->t_id,
504
get_mapping(mcd->md_ta, ed.ed_tgt->t_id));
505
} else if (debug_level > 1 && hash_iter(mcd->md_tdtba,
506
equiv_cb, &ed) < 0) {
507
/*
508
* We didn't find an equivalent node using the quick way (going
509
* through the hash normally), but we did find it by iterating
510
* through the entire hash. This usually means that the hash
511
* function is broken.
512
*/
513
aborterr("Self-unique second pass for %d <%x> (%s) == %d <%x>\n",
514
ctdp->t_id, ctdp->t_id, tdesc_name(ctdp), ed.ed_tgt->t_id,
515
ed.ed_tgt->t_id);
516
} else {
517
int id = mcd->md_tgt->td_nextid++;
518
519
debug(3, "Creating new type %d <%x>\n", id, id);
520
add_mapping(mcd->md_ta, ctdp->t_id, id);
521
hash_add(mcd->md_tdtba, ctdp);
522
}
523
524
mcd->md_parent->td_curemark = ed.ed_cur_mark + 1;
525
526
return (1);
527
}
528
529
static tdtrav_cb_f map_pre[] = {
530
NULL,
531
map_td_tree_pre, /* intrinsic */
532
map_td_tree_pre, /* pointer */
533
map_td_tree_pre, /* array */
534
map_td_tree_pre, /* function */
535
map_td_tree_pre, /* struct */
536
map_td_tree_pre, /* union */
537
map_td_tree_pre, /* enum */
538
map_td_tree_pre, /* forward */
539
map_td_tree_pre, /* typedef */
540
tdtrav_assert, /* typedef_unres */
541
map_td_tree_pre, /* volatile */
542
map_td_tree_pre, /* const */
543
map_td_tree_pre /* restrict */
544
};
545
546
static tdtrav_cb_f map_post[] = {
547
NULL,
548
map_td_tree_post, /* intrinsic */
549
map_td_tree_post, /* pointer */
550
map_td_tree_post, /* array */
551
map_td_tree_post, /* function */
552
map_td_tree_post, /* struct */
553
map_td_tree_post, /* union */
554
map_td_tree_post, /* enum */
555
map_td_tree_post, /* forward */
556
map_td_tree_post, /* typedef */
557
tdtrav_assert, /* typedef_unres */
558
map_td_tree_post, /* volatile */
559
map_td_tree_post, /* const */
560
map_td_tree_post /* restrict */
561
};
562
563
static tdtrav_cb_f map_self_post[] = {
564
NULL,
565
map_td_tree_self_post, /* intrinsic */
566
map_td_tree_self_post, /* pointer */
567
map_td_tree_self_post, /* array */
568
map_td_tree_self_post, /* function */
569
map_td_tree_self_post, /* struct */
570
map_td_tree_self_post, /* union */
571
map_td_tree_self_post, /* enum */
572
map_td_tree_self_post, /* forward */
573
map_td_tree_self_post, /* typedef */
574
tdtrav_assert, /* typedef_unres */
575
map_td_tree_self_post, /* volatile */
576
map_td_tree_self_post, /* const */
577
map_td_tree_self_post /* restrict */
578
};
579
580
/*
581
* Determining equivalence of iidesc_t nodes
582
*/
583
584
typedef struct iifind_data {
585
iidesc_t *iif_template;
586
alist_t *iif_ta;
587
int iif_newidx;
588
int iif_refmerge;
589
} iifind_data_t;
590
591
/*
592
* Check to see if this iidesc_t (node) - the current one on the list we're
593
* iterating through - matches the target one (iif->iif_template). Return -1
594
* if it matches, to stop the iteration.
595
*/
596
static int
597
iidesc_match(void *data, void *arg)
598
{
599
iidesc_t *node = data;
600
iifind_data_t *iif = arg;
601
int i;
602
603
if (node->ii_type != iif->iif_template->ii_type ||
604
!streq(node->ii_name, iif->iif_template->ii_name) ||
605
node->ii_dtype->t_id != iif->iif_newidx)
606
return (0);
607
608
if ((node->ii_type == II_SVAR || node->ii_type == II_SFUN) &&
609
!streq(node->ii_owner, iif->iif_template->ii_owner))
610
return (0);
611
612
if (node->ii_nargs != iif->iif_template->ii_nargs)
613
return (0);
614
615
for (i = 0; i < node->ii_nargs; i++) {
616
if (get_mapping(iif->iif_ta,
617
iif->iif_template->ii_args[i]->t_id) !=
618
node->ii_args[i]->t_id)
619
return (0);
620
}
621
622
if (iif->iif_refmerge) {
623
switch (iif->iif_template->ii_type) {
624
case II_GFUN:
625
case II_SFUN:
626
case II_GVAR:
627
case II_SVAR:
628
debug(3, "suppressing duping of %d %s from %s\n",
629
iif->iif_template->ii_type,
630
iif->iif_template->ii_name,
631
(iif->iif_template->ii_owner ?
632
iif->iif_template->ii_owner : "NULL"));
633
return (0);
634
case II_NOT:
635
case II_PSYM:
636
case II_SOU:
637
case II_TYPE:
638
break;
639
}
640
}
641
642
return (-1);
643
}
644
645
static int
646
merge_type_cb(void *data, void *arg)
647
{
648
iidesc_t *sii = data;
649
merge_cb_data_t *mcd = arg;
650
iifind_data_t iif;
651
tdtrav_cb_f *post;
652
653
post = (mcd->md_flags & MCD_F_SELFUNIQUIFY ? map_self_post : map_post);
654
655
/* Map the tdesc nodes */
656
(void) iitraverse(sii, &mcd->md_parent->td_curvgen, NULL, map_pre, post,
657
mcd);
658
659
/* Map the iidesc nodes */
660
iif.iif_template = sii;
661
iif.iif_ta = mcd->md_ta;
662
iif.iif_newidx = get_mapping(mcd->md_ta, sii->ii_dtype->t_id);
663
iif.iif_refmerge = (mcd->md_flags & MCD_F_REFMERGE);
664
665
if (hash_match(mcd->md_parent->td_iihash, sii, iidesc_match,
666
&iif) == 1)
667
/* successfully mapped */
668
return (1);
669
670
debug(3, "tba %s (%d)\n", (sii->ii_name ? sii->ii_name : "(anon)"),
671
sii->ii_type);
672
673
list_add(mcd->md_iitba, sii);
674
675
return (0);
676
}
677
678
static int
679
remap_node(tdesc_t **tgtp, tdesc_t *oldtgt, int selftid, tdesc_t *newself,
680
merge_cb_data_t *mcd)
681
{
682
tdesc_t *tgt = NULL;
683
tdesc_t template;
684
int oldid = oldtgt->t_id;
685
686
if (oldid == selftid) {
687
*tgtp = newself;
688
return (1);
689
}
690
691
if ((template.t_id = get_mapping(mcd->md_ta, oldid)) == 0)
692
aborterr("failed to get mapping for tid %d <%x>\n", oldid, oldid);
693
694
if (!hash_find(mcd->md_parent->td_idhash, (void *)&template,
695
(void *)&tgt) && (!(mcd->md_flags & MCD_F_REFMERGE) ||
696
!hash_find(mcd->md_tgt->td_idhash, (void *)&template,
697
(void *)&tgt))) {
698
debug(3, "Remap couldn't find %d <%x> (from %d <%x>)\n", template.t_id,
699
template.t_id, oldid, oldid);
700
*tgtp = oldtgt;
701
list_add(mcd->md_tdtbr, tgtp);
702
return (0);
703
}
704
705
*tgtp = tgt;
706
return (1);
707
}
708
709
static tdesc_t *
710
conjure_template(tdesc_t *old, int newselfid)
711
{
712
tdesc_t *new = xcalloc(sizeof (tdesc_t));
713
714
new->t_name = old->t_name ? xstrdup(old->t_name) : NULL;
715
new->t_type = old->t_type;
716
new->t_size = old->t_size;
717
new->t_id = newselfid;
718
new->t_flags = old->t_flags;
719
720
return (new);
721
}
722
723
/*ARGSUSED2*/
724
static tdesc_t *
725
conjure_intrinsic(tdesc_t *old, int newselfid, merge_cb_data_t *mcd __unused)
726
{
727
tdesc_t *new = conjure_template(old, newselfid);
728
729
new->t_intr = xmalloc(sizeof (intr_t));
730
bcopy(old->t_intr, new->t_intr, sizeof (intr_t));
731
732
return (new);
733
}
734
735
static tdesc_t *
736
conjure_plain(tdesc_t *old, int newselfid, merge_cb_data_t *mcd)
737
{
738
tdesc_t *new = conjure_template(old, newselfid);
739
740
(void) remap_node(&new->t_tdesc, old->t_tdesc, old->t_id, new, mcd);
741
742
return (new);
743
}
744
745
static tdesc_t *
746
conjure_function(tdesc_t *old, int newselfid, merge_cb_data_t *mcd)
747
{
748
tdesc_t *new = conjure_template(old, newselfid);
749
fndef_t *nfn = xmalloc(sizeof (fndef_t));
750
fndef_t *ofn = old->t_fndef;
751
int i;
752
753
(void) remap_node(&nfn->fn_ret, ofn->fn_ret, old->t_id, new, mcd);
754
755
nfn->fn_nargs = ofn->fn_nargs;
756
nfn->fn_vargs = ofn->fn_vargs;
757
758
if (nfn->fn_nargs > 0)
759
nfn->fn_args = xcalloc(sizeof (tdesc_t *) * ofn->fn_nargs);
760
761
for (i = 0; i < (int) ofn->fn_nargs; i++) {
762
(void) remap_node(&nfn->fn_args[i], ofn->fn_args[i], old->t_id,
763
new, mcd);
764
}
765
766
new->t_fndef = nfn;
767
768
return (new);
769
}
770
771
static tdesc_t *
772
conjure_array(tdesc_t *old, int newselfid, merge_cb_data_t *mcd)
773
{
774
tdesc_t *new = conjure_template(old, newselfid);
775
ardef_t *nar = xmalloc(sizeof (ardef_t));
776
ardef_t *oar = old->t_ardef;
777
778
(void) remap_node(&nar->ad_contents, oar->ad_contents, old->t_id, new,
779
mcd);
780
(void) remap_node(&nar->ad_idxtype, oar->ad_idxtype, old->t_id, new,
781
mcd);
782
783
nar->ad_nelems = oar->ad_nelems;
784
785
new->t_ardef = nar;
786
787
return (new);
788
}
789
790
static tdesc_t *
791
conjure_su(tdesc_t *old, int newselfid, merge_cb_data_t *mcd)
792
{
793
tdesc_t *new = conjure_template(old, newselfid);
794
mlist_t *omem, **nmemp;
795
796
for (omem = old->t_members, nmemp = &new->t_members;
797
omem; omem = omem->ml_next, nmemp = &((*nmemp)->ml_next)) {
798
*nmemp = xmalloc(sizeof (mlist_t));
799
(*nmemp)->ml_offset = omem->ml_offset;
800
(*nmemp)->ml_size = omem->ml_size;
801
(*nmemp)->ml_name = xstrdup(omem->ml_name ? omem->ml_name : "empty omem->ml_name");
802
(void) remap_node(&((*nmemp)->ml_type), omem->ml_type,
803
old->t_id, new, mcd);
804
}
805
*nmemp = NULL;
806
807
return (new);
808
}
809
810
/*ARGSUSED2*/
811
static tdesc_t *
812
conjure_enum(tdesc_t *old, int newselfid, merge_cb_data_t *mcd __unused)
813
{
814
tdesc_t *new = conjure_template(old, newselfid);
815
elist_t *oel, **nelp;
816
817
for (oel = old->t_emem, nelp = &new->t_emem;
818
oel; oel = oel->el_next, nelp = &((*nelp)->el_next)) {
819
*nelp = xmalloc(sizeof (elist_t));
820
(*nelp)->el_name = xstrdup(oel->el_name);
821
(*nelp)->el_number = oel->el_number;
822
}
823
*nelp = NULL;
824
825
return (new);
826
}
827
828
/*ARGSUSED2*/
829
static tdesc_t *
830
conjure_forward(tdesc_t *old, int newselfid, merge_cb_data_t *mcd)
831
{
832
tdesc_t *new = conjure_template(old, newselfid);
833
834
list_add(&mcd->md_tgt->td_fwdlist, new);
835
836
return (new);
837
}
838
839
/*ARGSUSED*/
840
static tdesc_t *
841
conjure_assert(tdesc_t *old __unused, int newselfid __unused, merge_cb_data_t *mcd __unused)
842
{
843
assert(1 == 0);
844
return (NULL);
845
}
846
847
static iidesc_t *
848
conjure_iidesc(iidesc_t *old, merge_cb_data_t *mcd)
849
{
850
iidesc_t *new = iidesc_dup(old);
851
int i;
852
853
(void) remap_node(&new->ii_dtype, old->ii_dtype, -1, NULL, mcd);
854
for (i = 0; i < new->ii_nargs; i++) {
855
(void) remap_node(&new->ii_args[i], old->ii_args[i], -1, NULL,
856
mcd);
857
}
858
859
return (new);
860
}
861
862
static int
863
fwd_redir(tdesc_t *fwd, tdesc_t **fwdp, void *private)
864
{
865
alist_t *map = private;
866
void *defn;
867
868
if (!alist_find(map, (void *)fwd, (void **)&defn))
869
return (0);
870
871
debug(3, "Redirecting an edge to %s\n", tdesc_name(defn));
872
873
*fwdp = defn;
874
875
return (1);
876
}
877
878
static tdtrav_cb_f fwd_redir_cbs[] = {
879
NULL,
880
NULL, /* intrinsic */
881
NULL, /* pointer */
882
NULL, /* array */
883
NULL, /* function */
884
NULL, /* struct */
885
NULL, /* union */
886
NULL, /* enum */
887
fwd_redir, /* forward */
888
NULL, /* typedef */
889
tdtrav_assert, /* typedef_unres */
890
NULL, /* volatile */
891
NULL, /* const */
892
NULL /* restrict */
893
};
894
895
typedef struct redir_mstr_data {
896
tdata_t *rmd_tgt;
897
alist_t *rmd_map;
898
} redir_mstr_data_t;
899
900
static int
901
redir_mstr_fwd_cb(void *name, void *value, void *arg)
902
{
903
tdesc_t *fwd = name;
904
int defnid = (uintptr_t)value;
905
redir_mstr_data_t *rmd = arg;
906
tdesc_t template;
907
tdesc_t *defn;
908
909
template.t_id = defnid;
910
911
if (!hash_find(rmd->rmd_tgt->td_idhash, (void *)&template,
912
(void *)&defn)) {
913
aborterr("Couldn't unforward %d (%s)\n", defnid,
914
tdesc_name(defn));
915
}
916
917
debug(3, "Forward map: resolved %d to %s\n", defnid, tdesc_name(defn));
918
919
alist_add(rmd->rmd_map, (void *)fwd, (void *)defn);
920
921
return (1);
922
}
923
924
static void
925
redir_mstr_fwds(merge_cb_data_t *mcd)
926
{
927
redir_mstr_data_t rmd;
928
alist_t *map = alist_new(NULL, NULL);
929
930
rmd.rmd_tgt = mcd->md_tgt;
931
rmd.rmd_map = map;
932
933
if (alist_iter(mcd->md_fdida, redir_mstr_fwd_cb, &rmd)) {
934
(void) iitraverse_hash(mcd->md_tgt->td_iihash,
935
&mcd->md_tgt->td_curvgen, fwd_redir_cbs, NULL, NULL, map);
936
}
937
938
alist_free(map);
939
}
940
941
static int
942
add_iitba_cb(void *data, void *private)
943
{
944
merge_cb_data_t *mcd = private;
945
iidesc_t *tba = data;
946
iidesc_t *new;
947
iifind_data_t iif;
948
int newidx;
949
950
newidx = get_mapping(mcd->md_ta, tba->ii_dtype->t_id);
951
assert(newidx != -1);
952
953
(void) list_remove(mcd->md_iitba, data, NULL, NULL);
954
955
iif.iif_template = tba;
956
iif.iif_ta = mcd->md_ta;
957
iif.iif_newidx = newidx;
958
iif.iif_refmerge = (mcd->md_flags & MCD_F_REFMERGE);
959
960
if (hash_match(mcd->md_parent->td_iihash, tba, iidesc_match,
961
&iif) == 1) {
962
debug(3, "iidesc_t %s already exists\n",
963
(tba->ii_name ? tba->ii_name : "(anon)"));
964
return (1);
965
}
966
967
new = conjure_iidesc(tba, mcd);
968
hash_add(mcd->md_tgt->td_iihash, new);
969
970
return (1);
971
}
972
973
static int
974
add_tdesc(tdesc_t *oldtdp, int newid, merge_cb_data_t *mcd)
975
{
976
tdesc_t *newtdp;
977
tdesc_t template;
978
979
template.t_id = newid;
980
assert(hash_find(mcd->md_parent->td_idhash,
981
(void *)&template, NULL) == 0);
982
983
debug(3, "trying to conjure %d %s (%d, <%x>) as %d, <%x>\n",
984
oldtdp->t_type, tdesc_name(oldtdp), oldtdp->t_id,
985
oldtdp->t_id, newid, newid);
986
987
if ((newtdp = tdesc_ops[oldtdp->t_type].conjure(oldtdp, newid,
988
mcd)) == NULL)
989
/* couldn't map everything */
990
return (0);
991
992
debug(3, "succeeded\n");
993
994
hash_add(mcd->md_tgt->td_idhash, newtdp);
995
hash_add(mcd->md_tgt->td_layouthash, newtdp);
996
997
return (1);
998
}
999
1000
static int
1001
add_tdtba_cb(void *data, void *arg)
1002
{
1003
tdesc_t *tdp = data;
1004
merge_cb_data_t *mcd = arg;
1005
int newid;
1006
int rc;
1007
1008
newid = get_mapping(mcd->md_ta, tdp->t_id);
1009
assert(newid != -1);
1010
1011
if ((rc = add_tdesc(tdp, newid, mcd)))
1012
hash_remove(mcd->md_tdtba, (void *)tdp);
1013
1014
return (rc);
1015
}
1016
1017
static int
1018
add_tdtbr_cb(void *data, void *arg)
1019
{
1020
tdesc_t **tdpp = data;
1021
merge_cb_data_t *mcd = arg;
1022
1023
debug(3, "Remapping %s (%d)\n", tdesc_name(*tdpp), (*tdpp)->t_id);
1024
1025
if (!remap_node(tdpp, *tdpp, -1, NULL, mcd))
1026
return (0);
1027
1028
(void) list_remove(mcd->md_tdtbr, (void *)tdpp, NULL, NULL);
1029
return (1);
1030
}
1031
1032
static void
1033
merge_types(hash_t *src, merge_cb_data_t *mcd)
1034
{
1035
list_t *iitba = NULL;
1036
list_t *tdtbr = NULL;
1037
int iirc, tdrc;
1038
1039
mcd->md_iitba = &iitba;
1040
mcd->md_tdtba = hash_new(TDATA_LAYOUT_HASH_SIZE, tdesc_layouthash,
1041
tdesc_layoutcmp);
1042
mcd->md_tdtbr = &tdtbr;
1043
1044
(void) hash_iter(src, merge_type_cb, mcd);
1045
1046
tdrc = hash_iter(mcd->md_tdtba, add_tdtba_cb, mcd);
1047
debug(3, "add_tdtba_cb added %d items\n", tdrc);
1048
1049
iirc = list_iter(*mcd->md_iitba, add_iitba_cb, mcd);
1050
debug(3, "add_iitba_cb added %d items\n", iirc);
1051
1052
assert(list_count(*mcd->md_iitba) == 0 &&
1053
hash_count(mcd->md_tdtba) == 0);
1054
1055
tdrc = list_iter(*mcd->md_tdtbr, add_tdtbr_cb, mcd);
1056
debug(3, "add_tdtbr_cb added %d items\n", tdrc);
1057
1058
if (list_count(*mcd->md_tdtbr) != 0)
1059
aborterr("Couldn't remap all nodes\n");
1060
1061
/*
1062
* We now have an alist of master forwards and the ids of the new master
1063
* definitions for those forwards in mcd->md_fdida. By this point,
1064
* we're guaranteed that all of the master definitions referenced in
1065
* fdida have been added to the master tree. We now traverse through
1066
* the master tree, redirecting all edges inbound to forwards that have
1067
* definitions to those definitions.
1068
*/
1069
if (mcd->md_parent == mcd->md_tgt) {
1070
redir_mstr_fwds(mcd);
1071
}
1072
}
1073
1074
void
1075
merge_into_master(tdata_t *cur, tdata_t *mstr, tdata_t *tgt, int selfuniquify)
1076
{
1077
merge_cb_data_t mcd;
1078
1079
cur->td_ref++;
1080
mstr->td_ref++;
1081
if (tgt)
1082
tgt->td_ref++;
1083
1084
assert(cur->td_ref == 1 && mstr->td_ref == 1 &&
1085
(tgt == NULL || tgt->td_ref == 1));
1086
1087
mcd.md_parent = mstr;
1088
mcd.md_tgt = (tgt ? tgt : mstr);
1089
mcd.md_ta = alist_new(NULL, NULL);
1090
mcd.md_fdida = alist_new(NULL, NULL);
1091
mcd.md_flags = 0;
1092
1093
if (selfuniquify)
1094
mcd.md_flags |= MCD_F_SELFUNIQUIFY;
1095
if (tgt)
1096
mcd.md_flags |= MCD_F_REFMERGE;
1097
1098
mstr->td_curvgen = MAX(mstr->td_curvgen, cur->td_curvgen);
1099
mstr->td_curemark = MAX(mstr->td_curemark, cur->td_curemark);
1100
1101
merge_types(cur->td_iihash, &mcd);
1102
1103
if (debug_level >= 3) {
1104
debug(3, "Type association stats\n");
1105
alist_stats(mcd.md_ta, 0);
1106
debug(3, "Layout hash stats\n");
1107
hash_stats(mcd.md_tgt->td_layouthash, 1);
1108
}
1109
1110
alist_free(mcd.md_fdida);
1111
alist_free(mcd.md_ta);
1112
1113
cur->td_ref--;
1114
mstr->td_ref--;
1115
if (tgt)
1116
tgt->td_ref--;
1117
}
1118
1119
tdesc_ops_t tdesc_ops[] = {
1120
{ "ERROR! BAD tdesc TYPE", NULL, NULL },
1121
{ "intrinsic", equiv_intrinsic, conjure_intrinsic },
1122
{ "pointer", equiv_plain, conjure_plain },
1123
{ "array", equiv_array, conjure_array },
1124
{ "function", equiv_function, conjure_function },
1125
{ "struct", equiv_su, conjure_su },
1126
{ "union", equiv_su, conjure_su },
1127
{ "enum", equiv_enum, conjure_enum },
1128
{ "forward", NULL, conjure_forward },
1129
{ "typedef", equiv_plain, conjure_plain },
1130
{ "typedef_unres", equiv_assert, conjure_assert },
1131
{ "volatile", equiv_plain, conjure_plain },
1132
{ "const", equiv_plain, conjure_plain },
1133
{ "restrict", equiv_plain, conjure_plain }
1134
};
1135
1136