Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/arm-optimized-routines/math/aarch64/experimental/acos_2u.c
48375 views
1
/*
2
* Double-precision acos(x) function.
3
*
4
* Copyright (c) 2023-2024, Arm Limited.
5
* SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception
6
*/
7
8
#include "math_config.h"
9
#include "poly_scalar_f64.h"
10
#include "test_sig.h"
11
#include "test_defs.h"
12
13
#define AbsMask 0x7fffffffffffffff
14
#define Half 0x3fe0000000000000
15
#define One 0x3ff0000000000000
16
#define PiOver2 0x1.921fb54442d18p+0
17
#define Pi 0x1.921fb54442d18p+1
18
#define Small 0x3c90000000000000 /* 2^-53. */
19
#define Small16 0x3c90
20
#define QNaN 0x7ff8
21
22
/* Fast implementation of double-precision acos(x) based on polynomial
23
approximation of double-precision asin(x).
24
25
For x < Small, approximate acos(x) by pi/2 - x. Small = 2^-53 for correct
26
rounding.
27
28
For |x| in [Small, 0.5], use the trigonometric identity
29
30
acos(x) = pi/2 - asin(x)
31
32
and use an order 11 polynomial P such that the final approximation of asin
33
is an odd polynomial: asin(x) ~ x + x^3 * P(x^2).
34
35
The largest observed error in this region is 1.18 ulps,
36
acos(0x1.fbab0a7c460f6p-2) got 0x1.0d54d1985c068p+0
37
want 0x1.0d54d1985c069p+0.
38
39
For |x| in [0.5, 1.0], use the following development of acos(x) near x = 1
40
41
acos(x) ~ pi/2 - 2 * sqrt(z) (1 + z * P(z))
42
43
where z = (1-x)/2, z is near 0 when x approaches 1, and P contributes to the
44
approximation of asin near 0.
45
46
The largest observed error in this region is 1.52 ulps,
47
acos(0x1.23d362722f591p-1) got 0x1.edbbedf8a7d6ep-1
48
want 0x1.edbbedf8a7d6cp-1.
49
50
For x in [-1.0, -0.5], use this other identity to deduce the negative inputs
51
from their absolute value: acos(x) = pi - acos(-x). */
52
double
53
acos (double x)
54
{
55
uint64_t ix = asuint64 (x);
56
uint64_t ia = ix & AbsMask;
57
uint64_t ia16 = ia >> 48;
58
double ax = asdouble (ia);
59
uint64_t sign = ix & ~AbsMask;
60
61
/* Special values and invalid range. */
62
if (unlikely (ia16 == QNaN))
63
return x;
64
if (ia > One)
65
return __math_invalid (x);
66
if (ia16 < Small16)
67
return PiOver2 - x;
68
69
/* Evaluate polynomial Q(|x|) = z + z * z2 * P(z2) with
70
z2 = x ^ 2 and z = |x| , if |x| < 0.5
71
z2 = (1 - |x|) / 2 and z = sqrt(z2), if |x| >= 0.5. */
72
double z2 = ax < 0.5 ? x * x : fma (-0.5, ax, 0.5);
73
double z = ax < 0.5 ? ax : sqrt (z2);
74
75
/* Use a single polynomial approximation P for both intervals. */
76
double z4 = z2 * z2;
77
double z8 = z4 * z4;
78
double z16 = z8 * z8;
79
double p = estrin_11_f64 (z2, z4, z8, z16, __asin_poly);
80
81
/* Finalize polynomial: z + z * z2 * P(z2). */
82
p = fma (z * z2, p, z);
83
84
/* acos(|x|) = pi/2 - sign(x) * Q(|x|), for |x| < 0.5
85
= pi - 2 Q(|x|), for -1.0 < x <= -0.5
86
= 2 Q(|x|) , for -0.5 < x < 0.0. */
87
if (ax < 0.5)
88
return PiOver2 - asdouble (asuint64 (p) | sign);
89
90
return (x <= -0.5) ? fma (-2.0, p, Pi) : 2.0 * p;
91
}
92
93
TEST_SIG (S, D, 1, acos, -1.0, 1.0)
94
TEST_ULP (acos, 1.02)
95
TEST_INTERVAL (acos, 0, Small, 5000)
96
TEST_INTERVAL (acos, Small, 0.5, 50000)
97
TEST_INTERVAL (acos, 0.5, 1.0, 50000)
98
TEST_INTERVAL (acos, 1.0, 0x1p11, 50000)
99
TEST_INTERVAL (acos, 0x1p11, inf, 20000)
100
TEST_INTERVAL (acos, -0, -inf, 20000)
101
102