Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/arm-optimized-routines/math/aarch64/experimental/asin_3u.c
48378 views
1
/*
2
* Double-precision asin(x) function.
3
*
4
* Copyright (c) 2023-2024, Arm Limited.
5
* SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception
6
*/
7
8
#include "poly_scalar_f64.h"
9
#include "math_config.h"
10
#include "test_sig.h"
11
#include "test_defs.h"
12
13
#define AbsMask 0x7fffffffffffffff
14
#define Half 0x3fe0000000000000
15
#define One 0x3ff0000000000000
16
#define PiOver2 0x1.921fb54442d18p+0
17
#define Small 0x3e50000000000000 /* 2^-26. */
18
#define Small16 0x3e50
19
#define QNaN 0x7ff8
20
21
/* Fast implementation of double-precision asin(x) based on polynomial
22
approximation.
23
24
For x < Small, approximate asin(x) by x. Small = 2^-26 for correct rounding.
25
26
For x in [Small, 0.5], use an order 11 polynomial P such that the final
27
approximation is an odd polynomial: asin(x) ~ x + x^3 P(x^2).
28
29
The largest observed error in this region is 1.01 ulps,
30
asin(0x1.da9735b5a9277p-2) got 0x1.ed78525a927efp-2
31
want 0x1.ed78525a927eep-2.
32
33
No cheap approximation can be obtained near x = 1, since the function is not
34
continuously differentiable on 1.
35
36
For x in [0.5, 1.0], we use a method based on a trigonometric identity
37
38
asin(x) = pi/2 - acos(x)
39
40
and a generalized power series expansion of acos(y) near y=1, that reads as
41
42
acos(y)/sqrt(2y) ~ 1 + 1/12 * y + 3/160 * y^2 + ... (1)
43
44
The Taylor series of asin(z) near z = 0, reads as
45
46
asin(z) ~ z + z^3 P(z^2) = z + z^3 * (1/6 + 3/40 z^2 + ...).
47
48
Therefore, (1) can be written in terms of P(y/2) or even asin(y/2)
49
50
acos(y) ~ sqrt(2y) (1 + y/2 * P(y/2)) = 2 * sqrt(y/2) (1 + y/2 * P(y/2)
51
52
Hence, if we write z = (1-x)/2, z is near 0 when x approaches 1 and
53
54
asin(x) ~ pi/2 - acos(x) ~ pi/2 - 2 * sqrt(z) (1 + z * P(z)).
55
56
The largest observed error in this region is 2.69 ulps,
57
asin(0x1.044e8cefee301p-1) got 0x1.1111dd54ddf96p-1
58
want 0x1.1111dd54ddf99p-1. */
59
double
60
asin (double x)
61
{
62
uint64_t ix = asuint64 (x);
63
uint64_t ia = ix & AbsMask;
64
uint64_t ia16 = ia >> 48;
65
double ax = asdouble (ia);
66
uint64_t sign = ix & ~AbsMask;
67
68
/* Special values and invalid range. */
69
if (unlikely (ia16 == QNaN))
70
return x;
71
if (ia > One)
72
return __math_invalid (x);
73
if (ia16 < Small16)
74
return x;
75
76
/* Evaluate polynomial Q(x) = y + y * z * P(z) with
77
z2 = x ^ 2 and z = |x| , if |x| < 0.5
78
z2 = (1 - |x|) / 2 and z = sqrt(z2), if |x| >= 0.5. */
79
double z2 = ax < 0.5 ? x * x : fma (-0.5, ax, 0.5);
80
double z = ax < 0.5 ? ax : sqrt (z2);
81
82
/* Use a single polynomial approximation P for both intervals. */
83
double z4 = z2 * z2;
84
double z8 = z4 * z4;
85
double z16 = z8 * z8;
86
double p = estrin_11_f64 (z2, z4, z8, z16, __asin_poly);
87
88
/* Finalize polynomial: z + z * z2 * P(z2). */
89
p = fma (z * z2, p, z);
90
91
/* asin(|x|) = Q(|x|) , for |x| < 0.5
92
= pi/2 - 2 Q(|x|), for |x| >= 0.5. */
93
double y = ax < 0.5 ? p : fma (-2.0, p, PiOver2);
94
95
/* Copy sign. */
96
return asdouble (asuint64 (y) | sign);
97
}
98
99
TEST_SIG (S, D, 1, asin, -1.0, 1.0)
100
TEST_ULP (asin, 2.20)
101
TEST_INTERVAL (asin, 0, Small, 5000)
102
TEST_INTERVAL (asin, Small, 0.5, 50000)
103
TEST_INTERVAL (asin, 0.5, 1.0, 50000)
104
TEST_INTERVAL (asin, 1.0, 0x1p11, 50000)
105
TEST_INTERVAL (asin, 0x1p11, inf, 20000)
106
TEST_INTERVAL (asin, -0, -inf, 20000)
107
108