Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/arm-optimized-routines/math/aarch64/experimental/atanh_3u.c
48378 views
1
/*
2
* Double-precision atanh(x) function.
3
*
4
* Copyright (c) 2022-2024, Arm Limited.
5
* SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception
6
*/
7
8
#include "math_config.h"
9
#include "poly_scalar_f64.h"
10
#include "test_sig.h"
11
#include "test_defs.h"
12
13
#define AbsMask 0x7fffffffffffffff
14
#define Half 0x3fe0000000000000
15
#define One 0x3ff0000000000000
16
#define Ln2Hi 0x1.62e42fefa3800p-1
17
#define Ln2Lo 0x1.ef35793c76730p-45
18
#define OneMHfRt2Top \
19
0x00095f62 /* top32(asuint64(1)) - top32(asuint64(sqrt(2)/2)). */
20
#define OneTop12 0x3ff
21
#define HfRt2Top 0x3fe6a09e /* top32(asuint64(sqrt(2)/2)). */
22
#define BottomMask 0xffffffff
23
24
static inline double
25
log1p_inline (double x)
26
{
27
/* Helper for calculating log(1 + x) using order-18 polynomial on a reduced
28
interval. Copied from log1p_2u.c, with no special-case handling. See that
29
file for details of the algorithm. */
30
double m = x + 1;
31
uint64_t mi = asuint64 (m);
32
33
/* Decompose x + 1 into (f + 1) * 2^k, with k chosen such that f is in
34
[sqrt(2)/2, sqrt(2)]. */
35
uint32_t u = (mi >> 32) + OneMHfRt2Top;
36
int32_t k = (int32_t) (u >> 20) - OneTop12;
37
uint32_t utop = (u & 0x000fffff) + HfRt2Top;
38
uint64_t u_red = ((uint64_t) utop << 32) | (mi & BottomMask);
39
double f = asdouble (u_red) - 1;
40
41
/* Correction term for round-off in f. */
42
double cm = (x - (m - 1)) / m;
43
44
/* Approximate log1p(f) with polynomial. */
45
double f2 = f * f;
46
double f4 = f2 * f2;
47
double f8 = f4 * f4;
48
double p = fma (
49
f, estrin_18_f64 (f, f2, f4, f8, f8 * f8, __log1p_data.coeffs) * f, f);
50
51
/* Recombine log1p(x) = k*log2 + log1p(f) + c/m. */
52
double kd = k;
53
double y = fma (Ln2Lo, kd, cm);
54
return y + fma (Ln2Hi, kd, p);
55
}
56
57
/* Approximation for double-precision inverse tanh(x), using a simplified
58
version of log1p. Greatest observed error is 3.00 ULP:
59
atanh(0x1.e58f3c108d714p-4) got 0x1.e7da77672a647p-4
60
want 0x1.e7da77672a64ap-4. */
61
double
62
atanh (double x)
63
{
64
uint64_t ix = asuint64 (x);
65
uint64_t sign = ix & ~AbsMask;
66
uint64_t ia = ix & AbsMask;
67
68
if (unlikely (ia == One))
69
return __math_divzero (sign >> 32);
70
71
if (unlikely (ia > One))
72
return __math_invalid (x);
73
74
double halfsign = asdouble (Half | sign);
75
double ax = asdouble (ia);
76
return halfsign * log1p_inline ((2 * ax) / (1 - ax));
77
}
78
79
TEST_SIG (S, D, 1, atanh, -1.0, 1.0)
80
TEST_ULP (atanh, 3.00)
81
TEST_SYM_INTERVAL (atanh, 0, 0x1p-23, 10000)
82
TEST_SYM_INTERVAL (atanh, 0x1p-23, 1, 90000)
83
TEST_SYM_INTERVAL (atanh, 1, inf, 100)
84
85