Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/arm-optimized-routines/math/aarch64/experimental/cbrt_2u.c
48378 views
1
/*
2
* Double-precision cbrt(x) function.
3
*
4
* Copyright (c) 2022-2024, Arm Limited.
5
* SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception
6
*/
7
8
#include "math_config.h"
9
#include "test_sig.h"
10
#include "test_defs.h"
11
12
TEST_SIG (S, D, 1, cbrt, -10.0, 10.0)
13
14
#define AbsMask 0x7fffffffffffffff
15
#define TwoThirds 0x1.5555555555555p-1
16
17
#define C(i) __cbrt_data.poly[i]
18
#define T(i) __cbrt_data.table[i]
19
20
/* Approximation for double-precision cbrt(x), using low-order polynomial and
21
two Newton iterations. Greatest observed error is 1.79 ULP. Errors repeat
22
according to the exponent, for instance an error observed for double value
23
m * 2^e will be observed for any input m * 2^(e + 3*i), where i is an
24
integer.
25
cbrt(0x1.fffff403f0bc6p+1) got 0x1.965fe72821e9bp+0
26
want 0x1.965fe72821e99p+0. */
27
double
28
cbrt (double x)
29
{
30
uint64_t ix = asuint64 (x);
31
uint64_t iax = ix & AbsMask;
32
uint64_t sign = ix & ~AbsMask;
33
34
if (unlikely (iax == 0 || iax == 0x7ff0000000000000))
35
return x;
36
37
/* |x| = m * 2^e, where m is in [0.5, 1.0].
38
We can easily decompose x into m and e using frexp. */
39
int e;
40
double m = frexp (asdouble (iax), &e);
41
42
/* Calculate rough approximation for cbrt(m) in [0.5, 1.0], starting point
43
for Newton iterations. */
44
double p_01 = fma (C (1), m, C (0));
45
double p_23 = fma (C (3), m, C (2));
46
double p = fma (p_23, m * m, p_01);
47
48
/* Two iterations of Newton's method for iteratively approximating cbrt. */
49
double m_by_3 = m / 3;
50
double a = fma (TwoThirds, p, m_by_3 / (p * p));
51
a = fma (TwoThirds, a, m_by_3 / (a * a));
52
53
/* Assemble the result by the following:
54
55
cbrt(x) = cbrt(m) * 2 ^ (e / 3).
56
57
Let t = (2 ^ (e / 3)) / (2 ^ round(e / 3)).
58
59
Then we know t = 2 ^ (i / 3), where i is the remainder from e / 3.
60
i is an integer in [-2, 2], so t can be looked up in the table T.
61
Hence the result is assembled as:
62
63
cbrt(x) = cbrt(m) * t * 2 ^ round(e / 3) * sign.
64
Which can be done easily using ldexp. */
65
return asdouble (asuint64 (ldexp (a * T (2 + e % 3), e / 3)) | sign);
66
}
67
68
TEST_ULP (cbrt, 1.30)
69
TEST_SYM_INTERVAL (cbrt, 0, inf, 1000000)
70
71