Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/arm-optimized-routines/math/aarch64/experimental/cbrtf_1u5.c
48375 views
1
/*
2
* Single-precision cbrt(x) function.
3
*
4
* Copyright (c) 2022-2024, Arm Limited.
5
* SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception
6
*/
7
8
#include "poly_scalar_f32.h"
9
#include "math_config.h"
10
#include "test_sig.h"
11
#include "test_defs.h"
12
13
#define AbsMask 0x7fffffff
14
#define SignMask 0x80000000
15
#define TwoThirds 0x1.555556p-1f
16
17
#define T(i) __cbrtf_data.table[i]
18
19
/* Approximation for single-precision cbrt(x), using low-order polynomial and
20
one Newton iteration on a reduced interval. Greatest error is 1.5 ULP. This
21
is observed for every value where the mantissa is 0x1.81410e and the
22
exponent is a multiple of 3, for example:
23
cbrtf(0x1.81410ep+30) got 0x1.255d96p+10
24
want 0x1.255d92p+10. */
25
float
26
cbrtf (float x)
27
{
28
uint32_t ix = asuint (x);
29
uint32_t iax = ix & AbsMask;
30
uint32_t sign = ix & SignMask;
31
32
if (unlikely (iax == 0 || iax == 0x7f800000))
33
return x;
34
35
/* |x| = m * 2^e, where m is in [0.5, 1.0].
36
We can easily decompose x into m and e using frexpf. */
37
int e;
38
float m = frexpf (asfloat (iax), &e);
39
40
/* p is a rough approximation for cbrt(m) in [0.5, 1.0]. The better this is,
41
the less accurate the next stage of the algorithm needs to be. An order-4
42
polynomial is enough for one Newton iteration. */
43
float p = pairwise_poly_3_f32 (m, m * m, __cbrtf_data.poly);
44
45
/* One iteration of Newton's method for iteratively approximating cbrt. */
46
float m_by_3 = m / 3;
47
float a = fmaf (TwoThirds, p, m_by_3 / (p * p));
48
49
/* Assemble the result by the following:
50
51
cbrt(x) = cbrt(m) * 2 ^ (e / 3).
52
53
Let t = (2 ^ (e / 3)) / (2 ^ round(e / 3)).
54
55
Then we know t = 2 ^ (i / 3), where i is the remainder from e / 3.
56
i is an integer in [-2, 2], so t can be looked up in the table T.
57
Hence the result is assembled as:
58
59
cbrt(x) = cbrt(m) * t * 2 ^ round(e / 3) * sign.
60
Which can be done easily using ldexpf. */
61
return asfloat (asuint (ldexpf (a * T (2 + e % 3), e / 3)) | sign);
62
}
63
64
TEST_SIG (S, F, 1, cbrt, -10.0, 10.0)
65
TEST_ULP (cbrtf, 1.03)
66
TEST_SYM_INTERVAL (cbrtf, 0, inf, 1000000)
67
68