Path: blob/main/contrib/arm-optimized-routines/math/aarch64/experimental/exp_inline.h
48378 views
/*1* Double-precision e^x function.2*3* Copyright (c) 2018-2024, Arm Limited.4* SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception5*/67#ifndef PL_MATH_EXP_INLINE_H8#define PL_MATH_EXP_INLINE_H910#include <float.h>11#include <math.h>12#include <stdint.h>13#include "math_config.h"1415#define N (1 << EXP_TABLE_BITS)16#define InvLn2N __exp_data.invln2N17#define NegLn2hiN __exp_data.negln2hiN18#define NegLn2loN __exp_data.negln2loN19#define Shift __exp_data.shift20#define T __exp_data.tab21#define C2 __exp_data.poly[5 - EXP_POLY_ORDER]22#define C3 __exp_data.poly[6 - EXP_POLY_ORDER]23#define C4 __exp_data.poly[7 - EXP_POLY_ORDER]24#define C5 __exp_data.poly[8 - EXP_POLY_ORDER]25#define C6 __exp_data.poly[9 - EXP_POLY_ORDER]2627/* Handle cases that may overflow or underflow when computing the result that28is scale*(1+TMP) without intermediate rounding. The bit representation of29scale is in SBITS, however it has a computed exponent that may have30overflown into the sign bit so that needs to be adjusted before using it as31a double. (int32_t)KI is the k used in the argument reduction and exponent32adjustment of scale, positive k here means the result may overflow and33negative k means the result may underflow. */34static inline double35exp_inline_special_case (double_t tmp, uint64_t sbits, uint64_t ki)36{37double_t scale, y;3839if ((ki & 0x80000000) == 0)40{41/* k > 0, the exponent of scale might have overflowed by <= 460. */42sbits -= 1009ull << 52;43scale = asdouble (sbits);44y = 0x1p1009 * (scale + scale * tmp);45return check_oflow (eval_as_double (y));46}47/* k < 0, need special care in the subnormal range. */48sbits += 1022ull << 52;49scale = asdouble (sbits);50y = scale + scale * tmp;51if (y < 1.0)52{53/* Round y to the right precision before scaling it into the subnormal54range to avoid double rounding that can cause 0.5+E/2 ulp error where55E is the worst-case ulp error outside the subnormal range. So this56is only useful if the goal is better than 1 ulp worst-case error. */57double_t hi, lo;58lo = scale - y + scale * tmp;59hi = 1.0 + y;60lo = 1.0 - hi + y + lo;61y = eval_as_double (hi + lo) - 1.0;62/* Avoid -0.0 with downward rounding. */63if (WANT_ROUNDING && y == 0.0)64y = 0.0;65/* The underflow exception needs to be signaled explicitly. */66force_eval_double (opt_barrier_double (0x1p-1022) * 0x1p-1022);67}68y = 0x1p-1022 * y;69return check_uflow (eval_as_double (y));70}7172/* Top 12 bits of a double (sign and exponent bits). */73static inline uint32_t74top12 (double x)75{76return asuint64 (x) >> 52;77}7879/* Computes exp(x+xtail) where |xtail| < 2^-8/N and |xtail| <= |x|.80If hastail is 0 then xtail is assumed to be 0 too. */81static inline double82exp_inline (double x, double xtail)83{84uint32_t abstop;85uint64_t ki, idx, top, sbits;86/* double_t for better performance on targets with FLT_EVAL_METHOD==2. */87double_t kd, z, r, r2, scale, tail, tmp;8889abstop = top12 (x) & 0x7ff;90if (unlikely (abstop - top12 (0x1p-54) >= top12 (512.0) - top12 (0x1p-54)))91{92if (abstop - top12 (0x1p-54) >= 0x80000000)93/* Avoid spurious underflow for tiny x. */94/* Note: 0 is common input. */95return WANT_ROUNDING ? 1.0 + x : 1.0;96if (abstop >= top12 (1024.0))97{98if (asuint64 (x) == asuint64 (-INFINITY))99return 0.0;100if (abstop >= top12 (INFINITY))101return 1.0 + x;102if (asuint64 (x) >> 63)103return __math_uflow (0);104else105return __math_oflow (0);106}107/* Large x is special cased below. */108abstop = 0;109}110111/* exp(x) = 2^(k/N) * exp(r), with exp(r) in [2^(-1/2N),2^(1/2N)]. */112/* x = ln2/N*k + r, with int k and r in [-ln2/2N, ln2/2N]. */113z = InvLn2N * x;114#if TOINT_INTRINSICS115kd = roundtoint (z);116ki = converttoint (z);117#elif EXP_USE_TOINT_NARROW118/* z - kd is in [-0.5-2^-16, 0.5] in all rounding modes. */119kd = eval_as_double (z + Shift);120ki = asuint64 (kd) >> 16;121kd = (double_t) (int32_t) ki;122#else123/* z - kd is in [-1, 1] in non-nearest rounding modes. */124kd = eval_as_double (z + Shift);125ki = asuint64 (kd);126kd -= Shift;127#endif128r = x + kd * NegLn2hiN + kd * NegLn2loN;129/* The code assumes 2^-200 < |xtail| < 2^-8/N. */130if (!__builtin_constant_p (xtail) || xtail != 0.0)131r += xtail;132/* 2^(k/N) ~= scale * (1 + tail). */133idx = 2 * (ki % N);134top = ki << (52 - EXP_TABLE_BITS);135tail = asdouble (T[idx]);136/* This is only a valid scale when -1023*N < k < 1024*N. */137sbits = T[idx + 1] + top;138/* exp(x) = 2^(k/N) * exp(r) ~= scale + scale * (tail + exp(r) - 1). */139/* Evaluation is optimized assuming superscalar pipelined execution. */140r2 = r * r;141/* Without fma the worst case error is 0.25/N ulp larger. */142/* Worst case error is less than 0.5+1.11/N+(abs poly error * 2^53) ulp. */143#if EXP_POLY_ORDER == 4144tmp = tail + r + r2 * C2 + r * r2 * (C3 + r * C4);145#elif EXP_POLY_ORDER == 5146tmp = tail + r + r2 * (C2 + r * C3) + r2 * r2 * (C4 + r * C5);147#elif EXP_POLY_ORDER == 6148tmp = tail + r + r2 * (0.5 + r * C3) + r2 * r2 * (C4 + r * C5 + r2 * C6);149#endif150if (unlikely (abstop == 0))151return exp_inline_special_case (tmp, sbits, ki);152scale = asdouble (sbits);153/* Note: tmp == 0 or |tmp| > 2^-200 and scale > 2^-739, so there154is no spurious underflow here even without fma. */155return eval_as_double (scale + scale * tmp);156}157158#endif159160161