Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/arm-optimized-routines/math/aarch64/experimental/expm1_2u5.c
48375 views
1
/*
2
* Double-precision e^x - 1 function.
3
*
4
* Copyright (c) 2022-2024, Arm Limited.
5
* SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception
6
*/
7
8
#include "poly_scalar_f64.h"
9
#include "math_config.h"
10
#include "test_sig.h"
11
#include "test_defs.h"
12
13
#define InvLn2 0x1.71547652b82fep0
14
#define Ln2hi 0x1.62e42fefa39efp-1
15
#define Ln2lo 0x1.abc9e3b39803fp-56
16
#define Shift 0x1.8p52
17
/* 0x1p-51, below which expm1(x) is within 2 ULP of x. */
18
#define TinyBound 0x3cc0000000000000
19
/* Above which expm1(x) overflows. */
20
#define BigBound 0x1.63108c75a1937p+9
21
/* Below which expm1(x) rounds to 1. */
22
#define NegBound -0x1.740bf7c0d927dp+9
23
#define AbsMask 0x7fffffffffffffff
24
25
/* Approximation for exp(x) - 1 using polynomial on a reduced interval.
26
The maximum error observed error is 2.17 ULP:
27
expm1(0x1.63f90a866748dp-2) got 0x1.a9af56603878ap-2
28
want 0x1.a9af566038788p-2. */
29
double
30
expm1 (double x)
31
{
32
uint64_t ix = asuint64 (x);
33
uint64_t ax = ix & AbsMask;
34
35
/* Tiny, +Infinity. */
36
if (ax <= TinyBound || ix == 0x7ff0000000000000)
37
return x;
38
39
/* +/-NaN. */
40
if (ax > 0x7ff0000000000000)
41
return __math_invalid (x);
42
43
/* Result is too large to be represented as a double. */
44
if (x >= 0x1.63108c75a1937p+9)
45
return __math_oflow (0);
46
47
/* Result rounds to -1 in double precision. */
48
if (x <= NegBound)
49
return -1;
50
51
/* Reduce argument to smaller range:
52
Let i = round(x / ln2)
53
and f = x - i * ln2, then f is in [-ln2/2, ln2/2].
54
exp(x) - 1 = 2^i * (expm1(f) + 1) - 1
55
where 2^i is exact because i is an integer. */
56
double j = fma (InvLn2, x, Shift) - Shift;
57
int64_t i = j;
58
double f = fma (j, -Ln2hi, x);
59
f = fma (j, -Ln2lo, f);
60
61
/* Approximate expm1(f) using polynomial.
62
Taylor expansion for expm1(x) has the form:
63
x + ax^2 + bx^3 + cx^4 ....
64
So we calculate the polynomial P(f) = a + bf + cf^2 + ...
65
and assemble the approximation expm1(f) ~= f + f^2 * P(f). */
66
double f2 = f * f;
67
double f4 = f2 * f2;
68
double p = fma (f2, estrin_10_f64 (f, f2, f4, f4 * f4, __expm1_poly), f);
69
70
/* Assemble the result, using a slight rearrangement to achieve acceptable
71
accuracy.
72
expm1(x) ~= 2^i * (p + 1) - 1
73
Let t = 2^(i - 1). */
74
double t = ldexp (0.5, i);
75
/* expm1(x) ~= 2 * (p * t + (t - 1/2)). */
76
return 2 * fma (p, t, t - 0.5);
77
}
78
79
TEST_SIG (S, D, 1, expm1, -9.9, 9.9)
80
TEST_ULP (expm1, 1.68)
81
TEST_SYM_INTERVAL (expm1, 0, 0x1p-51, 1000)
82
TEST_INTERVAL (expm1, 0x1p-51, 0x1.63108c75a1937p+9, 100000)
83
TEST_INTERVAL (expm1, -0x1p-51, -0x1.740bf7c0d927dp+9, 100000)
84
TEST_INTERVAL (expm1, 0x1.63108c75a1937p+9, inf, 100)
85
TEST_INTERVAL (expm1, -0x1.740bf7c0d927dp+9, -inf, 100)
86
87