Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/arm-optimized-routines/math/aarch64/experimental/expm1f_1u6.c
48375 views
1
/*
2
* Single-precision e^x - 1 function.
3
*
4
* Copyright (c) 2022-2024, Arm Limited.
5
* SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception
6
*/
7
8
#include "poly_scalar_f32.h"
9
#include "math_config.h"
10
#include "test_sig.h"
11
#include "test_defs.h"
12
13
#define Shift (0x1.8p23f)
14
#define InvLn2 (0x1.715476p+0f)
15
#define Ln2hi (0x1.62e4p-1f)
16
#define Ln2lo (0x1.7f7d1cp-20f)
17
#define AbsMask (0x7fffffff)
18
#define InfLimit \
19
(0x1.644716p6) /* Smallest value of x for which expm1(x) overflows. */
20
#define NegLimit \
21
(-0x1.9bbabcp+6) /* Largest value of x for which expm1(x) rounds to 1. */
22
23
/* Approximation for exp(x) - 1 using polynomial on a reduced interval.
24
The maximum error is 1.51 ULP:
25
expm1f(0x1.8baa96p-2) got 0x1.e2fb9p-2
26
want 0x1.e2fb94p-2. */
27
float
28
expm1f (float x)
29
{
30
uint32_t ix = asuint (x);
31
uint32_t ax = ix & AbsMask;
32
33
/* Tiny: |x| < 0x1p-23. expm1(x) is closely approximated by x.
34
Inf: x == +Inf => expm1(x) = x. */
35
if (ax <= 0x34000000 || (ix == 0x7f800000))
36
return x;
37
38
/* +/-NaN. */
39
if (ax > 0x7f800000)
40
return __math_invalidf (x);
41
42
if (x >= InfLimit)
43
return __math_oflowf (0);
44
45
if (x <= NegLimit || ix == 0xff800000)
46
return -1;
47
48
/* Reduce argument to smaller range:
49
Let i = round(x / ln2)
50
and f = x - i * ln2, then f is in [-ln2/2, ln2/2].
51
exp(x) - 1 = 2^i * (expm1(f) + 1) - 1
52
where 2^i is exact because i is an integer. */
53
float j = fmaf (InvLn2, x, Shift) - Shift;
54
int32_t i = j;
55
float f = fmaf (j, -Ln2hi, x);
56
f = fmaf (j, -Ln2lo, f);
57
58
/* Approximate expm1(f) using polynomial.
59
Taylor expansion for expm1(x) has the form:
60
x + ax^2 + bx^3 + cx^4 ....
61
So we calculate the polynomial P(f) = a + bf + cf^2 + ...
62
and assemble the approximation expm1(f) ~= f + f^2 * P(f). */
63
float p = fmaf (f * f, horner_4_f32 (f, __expm1f_poly), f);
64
/* Assemble the result, using a slight rearrangement to achieve acceptable
65
accuracy.
66
expm1(x) ~= 2^i * (p + 1) - 1
67
Let t = 2^(i - 1). */
68
float t = ldexpf (0.5f, i);
69
/* expm1(x) ~= 2 * (p * t + (t - 1/2)). */
70
return 2 * fmaf (p, t, t - 0.5f);
71
}
72
73
TEST_SIG (S, F, 1, expm1, -9.9, 9.9)
74
TEST_ULP (expm1f, 1.02)
75
TEST_SYM_INTERVAL (expm1f, 0, 0x1p-23, 1000)
76
TEST_INTERVAL (expm1f, 0x1p-23, 0x1.644716p6, 100000)
77
TEST_INTERVAL (expm1f, 0x1.644716p6, inf, 1000)
78
TEST_INTERVAL (expm1f, -0x1p-23, -0x1.9bbabcp+6, 100000)
79
TEST_INTERVAL (expm1f, -0x1.9bbabcp+6, -inf, 1000)
80
81