Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/arm-optimized-routines/math/aarch64/experimental/log1p_2u.c
48378 views
1
/*
2
* Double-precision log(1+x) function.
3
*
4
* Copyright (c) 2022-2024, Arm Limited.
5
* SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception
6
*/
7
8
#include "poly_scalar_f64.h"
9
#include "math_config.h"
10
#include "test_sig.h"
11
#include "test_defs.h"
12
13
#define Ln2Hi 0x1.62e42fefa3800p-1
14
#define Ln2Lo 0x1.ef35793c76730p-45
15
#define HfRt2Top 0x3fe6a09e /* top32(asuint64(sqrt(2)/2)). */
16
#define OneMHfRt2Top \
17
0x00095f62 /* top32(asuint64(1)) - top32(asuint64(sqrt(2)/2)). */
18
#define OneTop12 0x3ff
19
#define BottomMask 0xffffffff
20
#define OneMHfRt2 0x3fd2bec333018866
21
#define Rt2MOne 0x3fda827999fcef32
22
#define AbsMask 0x7fffffffffffffff
23
#define ExpM63 0x3c00
24
25
static inline double
26
eval_poly (double f)
27
{
28
double f2 = f * f;
29
double f4 = f2 * f2;
30
double f8 = f4 * f4;
31
return estrin_18_f64 (f, f2, f4, f8, f8 * f8, __log1p_data.coeffs);
32
}
33
34
/* log1p approximation using polynomial on reduced interval. Largest
35
observed errors are near the lower boundary of the region where k
36
is 0.
37
Maximum measured error: 1.75ULP.
38
log1p(-0x1.2e1aea97b3e5cp-2) got -0x1.65fb8659a2f9p-2
39
want -0x1.65fb8659a2f92p-2. */
40
double
41
log1p (double x)
42
{
43
uint64_t ix = asuint64 (x);
44
uint64_t ia = ix & AbsMask;
45
uint32_t ia16 = ia >> 48;
46
47
/* Handle special cases first. */
48
if (unlikely (ia16 >= 0x7ff0 || ix >= 0xbff0000000000000
49
|| ix == 0x8000000000000000))
50
{
51
if (ix == 0x8000000000000000 || ix == 0x7ff0000000000000)
52
{
53
/* x == -0 => log1p(x) = -0.
54
x == Inf => log1p(x) = Inf. */
55
return x;
56
}
57
if (ix == 0xbff0000000000000)
58
{
59
/* x == -1 => log1p(x) = -Inf. */
60
return __math_divzero (-1);
61
;
62
}
63
if (ia16 >= 0x7ff0)
64
{
65
/* x == +/-NaN => log1p(x) = NaN. */
66
return __math_invalid (asdouble (ia));
67
}
68
/* x < -1 => log1p(x) = NaN.
69
x == -Inf => log1p(x) = NaN. */
70
return __math_invalid (x);
71
}
72
73
/* With x + 1 = t * 2^k (where t = f + 1 and k is chosen such that f
74
is in [sqrt(2)/2, sqrt(2)]):
75
log1p(x) = k*log(2) + log1p(f).
76
77
f may not be representable exactly, so we need a correction term:
78
let m = round(1 + x), c = (1 + x) - m.
79
c << m: at very small x, log1p(x) ~ x, hence:
80
log(1+x) - log(m) ~ c/m.
81
82
We therefore calculate log1p(x) by k*log2 + log1p(f) + c/m. */
83
84
uint64_t sign = ix & ~AbsMask;
85
if (ia <= OneMHfRt2 || (!sign && ia <= Rt2MOne))
86
{
87
if (unlikely (ia16 <= ExpM63))
88
{
89
/* If exponent of x <= -63 then shortcut the polynomial and avoid
90
underflow by just returning x, which is exactly rounded in this
91
region. */
92
return x;
93
}
94
/* If x is in [sqrt(2)/2 - 1, sqrt(2) - 1] then we can shortcut all the
95
logic below, as k = 0 and f = x and therefore representable exactly.
96
All we need is to return the polynomial. */
97
return fma (x, eval_poly (x) * x, x);
98
}
99
100
/* Obtain correctly scaled k by manipulation in the exponent. */
101
double m = x + 1;
102
uint64_t mi = asuint64 (m);
103
uint32_t u = (mi >> 32) + OneMHfRt2Top;
104
int32_t k = (int32_t) (u >> 20) - OneTop12;
105
106
/* Correction term c/m. */
107
double cm = (x - (m - 1)) / m;
108
109
/* Reduce x to f in [sqrt(2)/2, sqrt(2)]. */
110
uint32_t utop = (u & 0x000fffff) + HfRt2Top;
111
uint64_t u_red = ((uint64_t) utop << 32) | (mi & BottomMask);
112
double f = asdouble (u_red) - 1;
113
114
/* Approximate log1p(x) on the reduced input using a polynomial. Because
115
log1p(0)=0 we choose an approximation of the form:
116
x + C0*x^2 + C1*x^3 + C2x^4 + ...
117
Hence approximation has the form f + f^2 * P(f)
118
where P(x) = C0 + C1*x + C2x^2 + ... */
119
double p = fma (f, eval_poly (f) * f, f);
120
121
double kd = k;
122
double y = fma (Ln2Lo, kd, cm);
123
return y + fma (Ln2Hi, kd, p);
124
}
125
126
TEST_SIG (S, D, 1, log1p, -0.9, 10.0)
127
TEST_ULP (log1p, 1.26)
128
TEST_SYM_INTERVAL (log1p, 0.0, 0x1p-23, 50000)
129
TEST_SYM_INTERVAL (log1p, 0x1p-23, 0.001, 50000)
130
TEST_SYM_INTERVAL (log1p, 0.001, 1.0, 50000)
131
TEST_SYM_INTERVAL (log1p, 1.0, inf, 5000)
132
133