Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/arm-optimized-routines/math/aarch64/sinpi_3u5.c
48255 views
1
/*
2
* Double-precision scalar sinpi function.
3
*
4
* Copyright (c) 2023-2024, Arm Limited.
5
* SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception
6
*/
7
8
#define _GNU_SOURCE
9
#include <math.h>
10
#include "mathlib.h"
11
#include "math_config.h"
12
#include "test_sig.h"
13
#include "test_defs.h"
14
#include "poly_scalar_f64.h"
15
16
/* Taylor series coefficents for sin(pi * x).
17
C2 coefficient (orginally ~=5.16771278) has been split into two parts:
18
C2_hi = 4, C2_lo = C2 - C2_hi (~=1.16771278)
19
This change in magnitude reduces floating point rounding errors.
20
C2_hi is then reintroduced after the polynomial approxmation. */
21
static const double poly[]
22
= { 0x1.921fb54442d184p1, -0x1.2aef39896f94bp0, 0x1.466bc6775ab16p1,
23
-0x1.32d2cce62dc33p-1, 0x1.507834891188ep-4, -0x1.e30750a28c88ep-8,
24
0x1.e8f48308acda4p-12, -0x1.6fc0032b3c29fp-16, 0x1.af86ae521260bp-21,
25
-0x1.012a9870eeb7dp-25 };
26
27
#define Shift 0x1.8p+52
28
/* TODO Store constant in structure for more efficient load. */
29
#define Pi 0x1.921fb54442d18p+1
30
31
/* Approximation for scalar double-precision sinpi(x).
32
Maximum error: 3.03 ULP:
33
sinpi(0x1.a90da2818f8b5p+7) got 0x1.fe358f255a4b3p-1
34
want 0x1.fe358f255a4b6p-1. */
35
double
36
arm_math_sinpi (double x)
37
{
38
if (isinf (x) || isnan (x))
39
return __math_invalid (x);
40
41
double r = asdouble (asuint64 (x) & ~0x8000000000000000);
42
uint64_t sign = asuint64 (x) & 0x8000000000000000;
43
44
/* Edge cases for when sinpif should be exactly 0. (Integers)
45
0x1p53 is the limit for single precision to store any decimal places. */
46
if (r >= 0x1p53)
47
return asdouble (sign);
48
49
/* If x is an integer, return 0. */
50
uint64_t m = (uint64_t) r;
51
if (r == m)
52
return asdouble (sign);
53
54
/* For very small inputs, squaring r causes underflow.
55
Values below this threshold can be approximated via sinpi(x) ≈ pi*x. */
56
if (r < 0x1p-63)
57
return Pi * x;
58
59
/* Any non-integer values >= 0x1x51 will be int + 0.5.
60
These values should return exactly 1 or -1. */
61
if (r >= 0x1p51)
62
{
63
uint64_t iy = ((m & 1) << 63) ^ asuint64 (1.0);
64
return asdouble (sign ^ iy);
65
}
66
67
/* n = rint(|x|). */
68
double n = r + Shift;
69
sign ^= (asuint64 (n) << 63);
70
n = n - Shift;
71
72
/* r = |x| - n (range reduction into -1/2 .. 1/2). */
73
r = r - n;
74
75
/* y = sin(r). */
76
double r2 = r * r;
77
double y = horner_9_f64 (r2, poly);
78
y = y * r;
79
80
/* Reintroduce C2_hi. */
81
y = fma (-4 * r2, r, y);
82
83
/* Copy sign of x to sin(|x|). */
84
return asdouble (asuint64 (y) ^ sign);
85
}
86
87
#if WANT_EXPERIMENTAL_MATH
88
double
89
sinpi (double x)
90
{
91
return arm_math_sinpi (x);
92
}
93
#endif
94
95
#if WANT_TRIGPI_TESTS
96
TEST_ULP (arm_math_sinpi, 2.53)
97
TEST_SYM_INTERVAL (arm_math_sinpi, 0, 0x1p-63, 5000)
98
TEST_SYM_INTERVAL (arm_math_sinpi, 0x1p-63, 0.5, 10000)
99
TEST_SYM_INTERVAL (arm_math_sinpi, 0.5, 0x1p51, 10000)
100
TEST_SYM_INTERVAL (arm_math_sinpi, 0x1p51, inf, 10000)
101
#endif
102
103