Path: blob/main/contrib/arm-optimized-routines/math/aarch64/sve/acos.c
48375 views
/*1* Double-precision SVE acos(x) function.2*3* Copyright (c) 2023-2024, Arm Limited.4* SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception5*/67#include "sv_math.h"8#include "sv_poly_f64.h"9#include "test_sig.h"10#include "test_defs.h"1112static const struct data13{14float64_t poly[12];15float64_t pi, pi_over_2;16} data = {17/* Polynomial approximation of (asin(sqrt(x)) - sqrt(x)) / (x * sqrt(x))18on [ 0x1p-106, 0x1p-2 ], relative error: 0x1.c3d8e169p-57. */19.poly = { 0x1.555555555554ep-3, 0x1.3333333337233p-4, 0x1.6db6db67f6d9fp-5,200x1.f1c71fbd29fbbp-6, 0x1.6e8b264d467d6p-6, 0x1.1c5997c357e9dp-6,210x1.c86a22cd9389dp-7, 0x1.856073c22ebbep-7, 0x1.fd1151acb6bedp-8,220x1.087182f799c1dp-6, -0x1.6602748120927p-7, 0x1.cfa0dd1f9478p-6, },23.pi = 0x1.921fb54442d18p+1,24.pi_over_2 = 0x1.921fb54442d18p+0,25};2627/* Double-precision SVE implementation of vector acos(x).2829For |x| in [0, 0.5], use an order 11 polynomial P such that the final30approximation of asin is an odd polynomial:3132acos(x) ~ pi/2 - (x + x^3 P(x^2)).3334The largest observed error in this region is 1.18 ulps,35_ZGVsMxv_acos (0x1.fbc5fe28ee9e3p-2) got 0x1.0d4d0f55667f6p+036want 0x1.0d4d0f55667f7p+0.3738For |x| in [0.5, 1.0], use same approximation with a change of variable3940acos(x) = y + y * z * P(z), with z = (1-x)/2 and y = sqrt(z).4142The largest observed error in this region is 1.52 ulps,43_ZGVsMxv_acos (0x1.24024271a500ap-1) got 0x1.ed82df4243f0dp-144want 0x1.ed82df4243f0bp-1. */45svfloat64_t SV_NAME_D1 (acos) (svfloat64_t x, const svbool_t pg)46{47const struct data *d = ptr_barrier (&data);4849svuint64_t sign = svand_x (pg, svreinterpret_u64 (x), 0x8000000000000000);50svfloat64_t ax = svabs_x (pg, x);5152svbool_t a_gt_half = svacgt (pg, x, 0.5);5354/* Evaluate polynomial Q(x) = z + z * z2 * P(z2) with55z2 = x ^ 2 and z = |x| , if |x| < 0.556z2 = (1 - |x|) / 2 and z = sqrt(z2), if |x| >= 0.5. */57svfloat64_t z2 = svsel (a_gt_half, svmls_x (pg, sv_f64 (0.5), ax, 0.5),58svmul_x (pg, x, x));59svfloat64_t z = svsqrt_m (ax, a_gt_half, z2);6061/* Use a single polynomial approximation P for both intervals. */62svfloat64_t z4 = svmul_x (pg, z2, z2);63svfloat64_t z8 = svmul_x (pg, z4, z4);64svfloat64_t z16 = svmul_x (pg, z8, z8);65svfloat64_t p = sv_estrin_11_f64_x (pg, z2, z4, z8, z16, d->poly);6667/* Finalize polynomial: z + z * z2 * P(z2). */68p = svmla_x (pg, z, svmul_x (pg, z, z2), p);6970/* acos(|x|) = pi/2 - sign(x) * Q(|x|), for |x| < 0.571= 2 Q(|x|) , for 0.5 < x < 1.072= pi - 2 Q(|x|) , for -1.0 < x < -0.5. */73svfloat64_t y74= svreinterpret_f64 (svorr_x (pg, svreinterpret_u64 (p), sign));7576svbool_t is_neg = svcmplt (pg, x, 0.0);77svfloat64_t off = svdup_f64_z (is_neg, d->pi);78svfloat64_t mul = svsel (a_gt_half, sv_f64 (2.0), sv_f64 (-1.0));79svfloat64_t add = svsel (a_gt_half, off, sv_f64 (d->pi_over_2));8081return svmla_x (pg, add, mul, y);82}8384TEST_SIG (SV, D, 1, acos, -1.0, 1.0)85TEST_ULP (SV_NAME_D1 (acos), 1.02)86TEST_DISABLE_FENV (SV_NAME_D1 (acos))87TEST_INTERVAL (SV_NAME_D1 (acos), 0, 0.5, 50000)88TEST_INTERVAL (SV_NAME_D1 (acos), 0.5, 1.0, 50000)89TEST_INTERVAL (SV_NAME_D1 (acos), 1.0, 0x1p11, 50000)90TEST_INTERVAL (SV_NAME_D1 (acos), 0x1p11, inf, 20000)91TEST_INTERVAL (SV_NAME_D1 (acos), -0, -inf, 20000)92CLOSE_SVE_ATTR939495