Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/arm-optimized-routines/math/aarch64/sve/acosf.c
48375 views
1
/*
2
* Single-precision SVE acos(x) function.
3
*
4
* Copyright (c) 2023-2024, Arm Limited.
5
* SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception
6
*/
7
8
#include "sv_math.h"
9
#include "sv_poly_f32.h"
10
#include "test_sig.h"
11
#include "test_defs.h"
12
13
static const struct data
14
{
15
float32_t poly[5];
16
float32_t pi, pi_over_2;
17
} data = {
18
/* Polynomial approximation of (asin(sqrt(x)) - sqrt(x)) / (x * sqrt(x)) on
19
[ 0x1p-24 0x1p-2 ] order = 4 rel error: 0x1.00a23bbp-29 . */
20
.poly = { 0x1.55555ep-3, 0x1.33261ap-4, 0x1.70d7dcp-5, 0x1.b059dp-6,
21
0x1.3af7d8p-5, },
22
.pi = 0x1.921fb6p+1f,
23
.pi_over_2 = 0x1.921fb6p+0f,
24
};
25
26
/* Single-precision SVE implementation of vector acos(x).
27
28
For |x| in [0, 0.5], use order 4 polynomial P such that the final
29
approximation of asin is an odd polynomial:
30
31
acos(x) ~ pi/2 - (x + x^3 P(x^2)).
32
33
The largest observed error in this region is 1.16 ulps,
34
_ZGVsMxv_acosf(0x1.ffbeccp-2) got 0x1.0c27f8p+0
35
want 0x1.0c27f6p+0.
36
37
For |x| in [0.5, 1.0], use same approximation with a change of variable
38
39
acos(x) = y + y * z * P(z), with z = (1-x)/2 and y = sqrt(z).
40
41
The largest observed error in this region is 1.32 ulps,
42
_ZGVsMxv_acosf (0x1.15ba56p-1) got 0x1.feb33p-1
43
want 0x1.feb32ep-1. */
44
svfloat32_t SV_NAME_F1 (acos) (svfloat32_t x, const svbool_t pg)
45
{
46
const struct data *d = ptr_barrier (&data);
47
48
svuint32_t sign = svand_x (pg, svreinterpret_u32 (x), 0x80000000);
49
svfloat32_t ax = svabs_x (pg, x);
50
svbool_t a_gt_half = svacgt (pg, x, 0.5);
51
52
/* Evaluate polynomial Q(x) = z + z * z2 * P(z2) with
53
z2 = x ^ 2 and z = |x| , if |x| < 0.5
54
z2 = (1 - |x|) / 2 and z = sqrt(z2), if |x| >= 0.5. */
55
svfloat32_t z2 = svsel (a_gt_half, svmls_x (pg, sv_f32 (0.5), ax, 0.5),
56
svmul_x (pg, x, x));
57
svfloat32_t z = svsqrt_m (ax, a_gt_half, z2);
58
59
/* Use a single polynomial approximation P for both intervals. */
60
svfloat32_t p = sv_horner_4_f32_x (pg, z2, d->poly);
61
/* Finalize polynomial: z + z * z2 * P(z2). */
62
p = svmla_x (pg, z, svmul_x (pg, z, z2), p);
63
64
/* acos(|x|) = pi/2 - sign(x) * Q(|x|), for |x| < 0.5
65
= 2 Q(|x|) , for 0.5 < x < 1.0
66
= pi - 2 Q(|x|) , for -1.0 < x < -0.5. */
67
svfloat32_t y
68
= svreinterpret_f32 (svorr_x (pg, svreinterpret_u32 (p), sign));
69
70
svbool_t is_neg = svcmplt (pg, x, 0.0);
71
svfloat32_t off = svdup_f32_z (is_neg, d->pi);
72
svfloat32_t mul = svsel (a_gt_half, sv_f32 (2.0), sv_f32 (-1.0));
73
svfloat32_t add = svsel (a_gt_half, off, sv_f32 (d->pi_over_2));
74
75
return svmla_x (pg, add, mul, y);
76
}
77
78
TEST_SIG (SV, F, 1, acos, -1.0, 1.0)
79
TEST_ULP (SV_NAME_F1 (acos), 0.82)
80
TEST_DISABLE_FENV (SV_NAME_F1 (acos))
81
TEST_INTERVAL (SV_NAME_F1 (acos), 0, 0.5, 50000)
82
TEST_INTERVAL (SV_NAME_F1 (acos), 0.5, 1.0, 50000)
83
TEST_INTERVAL (SV_NAME_F1 (acos), 1.0, 0x1p11, 50000)
84
TEST_INTERVAL (SV_NAME_F1 (acos), 0x1p11, inf, 20000)
85
TEST_INTERVAL (SV_NAME_F1 (acos), -0, -inf, 20000)
86
CLOSE_SVE_ATTR
87
88