Path: blob/main/contrib/arm-optimized-routines/math/aarch64/sve/asin.c
48375 views
/*1* Double-precision SVE asin(x) function.2*3* Copyright (c) 2023-2024, Arm Limited.4* SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception5*/67#include "sv_math.h"8#include "sv_poly_f64.h"9#include "test_sig.h"10#include "test_defs.h"1112static const struct data13{14float64_t poly[12];15float64_t pi_over_2f;16} data = {17/* Polynomial approximation of (asin(sqrt(x)) - sqrt(x)) / (x * sqrt(x))18on [ 0x1p-106, 0x1p-2 ], relative error: 0x1.c3d8e169p-57. */19.poly = { 0x1.555555555554ep-3, 0x1.3333333337233p-4,200x1.6db6db67f6d9fp-5, 0x1.f1c71fbd29fbbp-6,210x1.6e8b264d467d6p-6, 0x1.1c5997c357e9dp-6,220x1.c86a22cd9389dp-7, 0x1.856073c22ebbep-7,230x1.fd1151acb6bedp-8, 0x1.087182f799c1dp-6,24-0x1.6602748120927p-7, 0x1.cfa0dd1f9478p-6, },25.pi_over_2f = 0x1.921fb54442d18p+0,26};2728#define P(i) sv_f64 (d->poly[i])2930/* Double-precision SVE implementation of vector asin(x).3132For |x| in [0, 0.5], use an order 11 polynomial P such that the final33approximation is an odd polynomial: asin(x) ~ x + x^3 P(x^2).3435The largest observed error in this region is 0.52 ulps,36_ZGVsMxv_asin(0x1.d95ae04998b6cp-2) got 0x1.ec13757305f27p-237want 0x1.ec13757305f26p-2.3839For |x| in [0.5, 1.0], use same approximation with a change of variable4041asin(x) = pi/2 - (y + y * z * P(z)), with z = (1-x)/2 and y = sqrt(z).4243The largest observed error in this region is 2.69 ulps,44_ZGVsMxv_asin (0x1.044e8cefee301p-1) got 0x1.1111dd54ddf96p-145want 0x1.1111dd54ddf99p-1. */46svfloat64_t SV_NAME_D1 (asin) (svfloat64_t x, const svbool_t pg)47{48const struct data *d = ptr_barrier (&data);4950svuint64_t sign = svand_x (pg, svreinterpret_u64 (x), 0x8000000000000000);51svfloat64_t ax = svabs_x (pg, x);52svbool_t a_ge_half = svacge (pg, x, 0.5);5354/* Evaluate polynomial Q(x) = y + y * z * P(z) with55z = x ^ 2 and y = |x| , if |x| < 0.556z = (1 - |x|) / 2 and y = sqrt(z), if |x| >= 0.5. */57svfloat64_t z2 = svsel (a_ge_half, svmls_x (pg, sv_f64 (0.5), ax, 0.5),58svmul_x (pg, x, x));59svfloat64_t z = svsqrt_m (ax, a_ge_half, z2);6061/* Use a single polynomial approximation P for both intervals. */62svfloat64_t z4 = svmul_x (pg, z2, z2);63svfloat64_t z8 = svmul_x (pg, z4, z4);64svfloat64_t z16 = svmul_x (pg, z8, z8);65svfloat64_t p = sv_estrin_11_f64_x (pg, z2, z4, z8, z16, d->poly);66/* Finalize polynomial: z + z * z2 * P(z2). */67p = svmla_x (pg, z, svmul_x (pg, z, z2), p);6869/* asin(|x|) = Q(|x|) , for |x| < 0.570= pi/2 - 2 Q(|x|), for |x| >= 0.5. */71svfloat64_t y = svmad_m (a_ge_half, p, sv_f64 (-2.0), d->pi_over_2f);7273/* Copy sign. */74return svreinterpret_f64 (svorr_x (pg, svreinterpret_u64 (y), sign));75}7677TEST_SIG (SV, D, 1, asin, -1.0, 1.0)78TEST_ULP (SV_NAME_D1 (asin), 2.20)79TEST_DISABLE_FENV (SV_NAME_D1 (asin))80TEST_INTERVAL (SV_NAME_D1 (asin), 0, 0.5, 50000)81TEST_INTERVAL (SV_NAME_D1 (asin), 0.5, 1.0, 50000)82TEST_INTERVAL (SV_NAME_D1 (asin), 1.0, 0x1p11, 50000)83TEST_INTERVAL (SV_NAME_D1 (asin), 0x1p11, inf, 20000)84TEST_INTERVAL (SV_NAME_D1 (asin), -0, -inf, 20000)85CLOSE_SVE_ATTR868788