Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/arm-optimized-routines/math/aarch64/sve/asinf.c
48378 views
1
/*
2
* Single-precision SVE asin(x) function.
3
*
4
* Copyright (c) 2023-2024, Arm Limited.
5
* SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception
6
*/
7
8
#include "sv_math.h"
9
#include "sv_poly_f32.h"
10
#include "test_sig.h"
11
#include "test_defs.h"
12
13
static const struct data
14
{
15
float32_t poly[5];
16
float32_t pi_over_2f;
17
} data = {
18
/* Polynomial approximation of (asin(sqrt(x)) - sqrt(x)) / (x * sqrt(x)) on
19
[ 0x1p-24 0x1p-2 ] order = 4 rel error: 0x1.00a23bbp-29 . */
20
.poly = { 0x1.55555ep-3, 0x1.33261ap-4, 0x1.70d7dcp-5, 0x1.b059dp-6,
21
0x1.3af7d8p-5, },
22
.pi_over_2f = 0x1.921fb6p+0f,
23
};
24
25
/* Single-precision SVE implementation of vector asin(x).
26
27
For |x| in [0, 0.5], use order 4 polynomial P such that the final
28
approximation is an odd polynomial: asin(x) ~ x + x^3 P(x^2).
29
30
The largest observed error in this region is 0.83 ulps,
31
_ZGVsMxv_asinf (0x1.ea00f4p-2) got 0x1.fef15ep-2
32
want 0x1.fef15cp-2.
33
34
For |x| in [0.5, 1.0], use same approximation with a change of variable
35
36
asin(x) = pi/2 - (y + y * z * P(z)), with z = (1-x)/2 and y = sqrt(z).
37
38
The largest observed error in this region is 2.41 ulps,
39
_ZGVsMxv_asinf (-0x1.00203ep-1) got -0x1.0c3a64p-1
40
want -0x1.0c3a6p-1. */
41
svfloat32_t SV_NAME_F1 (asin) (svfloat32_t x, const svbool_t pg)
42
{
43
const struct data *d = ptr_barrier (&data);
44
45
svuint32_t sign = svand_x (pg, svreinterpret_u32 (x), 0x80000000);
46
47
svfloat32_t ax = svabs_x (pg, x);
48
svbool_t a_ge_half = svacge (pg, x, 0.5);
49
50
/* Evaluate polynomial Q(x) = y + y * z * P(z) with
51
z = x ^ 2 and y = |x| , if |x| < 0.5
52
z = (1 - |x|) / 2 and y = sqrt(z), if |x| >= 0.5. */
53
svfloat32_t z2 = svsel (a_ge_half, svmls_x (pg, sv_f32 (0.5), ax, 0.5),
54
svmul_x (pg, x, x));
55
svfloat32_t z = svsqrt_m (ax, a_ge_half, z2);
56
57
/* Use a single polynomial approximation P for both intervals. */
58
svfloat32_t p = sv_horner_4_f32_x (pg, z2, d->poly);
59
/* Finalize polynomial: z + z * z2 * P(z2). */
60
p = svmla_x (pg, z, svmul_x (pg, z, z2), p);
61
62
/* asin(|x|) = Q(|x|) , for |x| < 0.5
63
= pi/2 - 2 Q(|x|), for |x| >= 0.5. */
64
svfloat32_t y = svmad_m (a_ge_half, p, sv_f32 (-2.0), d->pi_over_2f);
65
66
/* Copy sign. */
67
return svreinterpret_f32 (svorr_x (pg, svreinterpret_u32 (y), sign));
68
}
69
70
TEST_SIG (SV, F, 1, asin, -1.0, 1.0)
71
TEST_ULP (SV_NAME_F1 (asin), 1.91)
72
TEST_DISABLE_FENV (SV_NAME_F1 (asin))
73
TEST_INTERVAL (SV_NAME_F1 (asin), 0, 0.5, 50000)
74
TEST_INTERVAL (SV_NAME_F1 (asin), 0.5, 1.0, 50000)
75
TEST_INTERVAL (SV_NAME_F1 (asin), 1.0, 0x1p11, 50000)
76
TEST_INTERVAL (SV_NAME_F1 (asin), 0x1p11, inf, 20000)
77
TEST_INTERVAL (SV_NAME_F1 (asin), -0, -inf, 20000)
78
CLOSE_SVE_ATTR
79
80