Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/arm-optimized-routines/math/aarch64/sve/erfc.c
48375 views
1
/*
2
* Double-precision vector erfc(x) function.
3
*
4
* Copyright (c) 2023-2024, Arm Limited.
5
* SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception
6
*/
7
8
#include "sv_math.h"
9
#include "test_sig.h"
10
#include "test_defs.h"
11
12
static const struct data
13
{
14
uint64_t off_idx, off_arr;
15
double max, shift;
16
double p20, p40, p41, p42;
17
double p51, p52;
18
double q5, r5;
19
double q6, r6;
20
double q7, r7;
21
double q8, r8;
22
double q9, r9;
23
uint64_t table_scale;
24
} data = {
25
/* Set an offset so the range of the index used for lookup is 3487, and it
26
can be clamped using a saturated add on an offset index.
27
Index offset is 0xffffffffffffffff - asuint64(shift) - 3487. */
28
.off_idx = 0xbd3ffffffffff260,
29
.off_arr = 0xfffffffffffff260, /* 0xffffffffffffffff - 3487. */
30
.max = 0x1.b3ep+4, /* 3487/128. */
31
.shift = 0x1p45,
32
.table_scale = 0x37f0000000000000, /* asuint64(0x1p-128). */
33
.p20 = 0x1.5555555555555p-2, /* 1/3, used to compute 2/3 and 1/6. */
34
.p40 = -0x1.999999999999ap-4, /* 1/10. */
35
.p41 = -0x1.999999999999ap-2, /* 2/5. */
36
.p42 = 0x1.1111111111111p-3, /* 2/15. */
37
.p51 = -0x1.c71c71c71c71cp-3, /* 2/9. */
38
.p52 = 0x1.6c16c16c16c17p-5, /* 2/45. */
39
/* Qi = (i+1) / i, for i = 5, ..., 9. */
40
.q5 = 0x1.3333333333333p0,
41
.q6 = 0x1.2aaaaaaaaaaabp0,
42
.q7 = 0x1.2492492492492p0,
43
.q8 = 0x1.2p0,
44
.q9 = 0x1.1c71c71c71c72p0,
45
/* Ri = -2 * i / ((i+1)*(i+2)), for i = 5, ..., 9. */
46
.r5 = -0x1.e79e79e79e79ep-3,
47
.r6 = -0x1.b6db6db6db6dbp-3,
48
.r7 = -0x1.8e38e38e38e39p-3,
49
.r8 = -0x1.6c16c16c16c17p-3,
50
.r9 = -0x1.4f2094f2094f2p-3,
51
};
52
53
/* Optimized double-precision vector erfc(x).
54
Approximation based on series expansion near x rounded to
55
nearest multiple of 1/128.
56
Let d = x - r, and scale = 2 / sqrt(pi) * exp(-r^2). For x near r,
57
58
erfc(x) ~ erfc(r) - scale * d * poly(r, d), with
59
60
poly(r, d) = 1 - r d + (2/3 r^2 - 1/3) d^2 - r (1/3 r^2 - 1/2) d^3
61
+ (2/15 r^4 - 2/5 r^2 + 1/10) d^4
62
- r * (2/45 r^4 - 2/9 r^2 + 1/6) d^5
63
+ p6(r) d^6 + ... + p10(r) d^10
64
65
Polynomials p6(r) to p10(r) are computed using recurrence relation
66
67
2(i+1)p_i + 2r(i+2)p_{i+1} + (i+2)(i+3)p_{i+2} = 0,
68
with p0 = 1, and p1(r) = -r.
69
70
Values of erfc(r) and scale are read from lookup tables. Stored values
71
are scaled to avoid hitting the subnormal range.
72
73
Note that for x < 0, erfc(x) = 2.0 - erfc(-x).
74
75
Maximum measured error: 1.71 ULP
76
_ZGVsMxv_erfc(0x1.46cfe976733p+4) got 0x1.e15fcbea3e7afp-608
77
want 0x1.e15fcbea3e7adp-608. */
78
svfloat64_t SV_NAME_D1 (erfc) (svfloat64_t x, const svbool_t pg)
79
{
80
const struct data *dat = ptr_barrier (&data);
81
82
svfloat64_t a = svabs_x (pg, x);
83
84
/* Clamp input at |x| <= 3487/128. */
85
a = svmin_x (pg, a, dat->max);
86
87
/* Reduce x to the nearest multiple of 1/128. */
88
svfloat64_t shift = sv_f64 (dat->shift);
89
svfloat64_t z = svadd_x (pg, a, shift);
90
91
/* Saturate index for the NaN case. */
92
svuint64_t i = svqadd (svreinterpret_u64 (z), dat->off_idx);
93
94
/* Lookup erfc(r) and 2/sqrt(pi)*exp(-r^2) in tables. */
95
i = svadd_x (pg, i, i);
96
const float64_t *p = &__v_erfc_data.tab[0].erfc - 2 * dat->off_arr;
97
svfloat64_t erfcr = svld1_gather_index (pg, p, i);
98
svfloat64_t scale = svld1_gather_index (pg, p + 1, i);
99
100
/* erfc(x) ~ erfc(r) - scale * d * poly(r, d). */
101
svfloat64_t r = svsub_x (pg, z, shift);
102
svfloat64_t d = svsub_x (pg, a, r);
103
svfloat64_t d2 = svmul_x (pg, d, d);
104
svfloat64_t r2 = svmul_x (pg, r, r);
105
106
/* poly (d, r) = 1 + p1(r) * d + p2(r) * d^2 + ... + p9(r) * d^9. */
107
svfloat64_t p1 = r;
108
svfloat64_t third = sv_f64 (dat->p20);
109
svfloat64_t twothird = svmul_x (pg, third, 2.0);
110
svfloat64_t sixth = svmul_x (pg, third, 0.5);
111
svfloat64_t p2 = svmls_x (pg, third, r2, twothird);
112
svfloat64_t p3 = svmad_x (pg, r2, third, -0.5);
113
p3 = svmul_x (pg, r, p3);
114
svfloat64_t p4 = svmla_x (pg, sv_f64 (dat->p41), r2, dat->p42);
115
p4 = svmls_x (pg, sv_f64 (dat->p40), r2, p4);
116
svfloat64_t p5 = svmla_x (pg, sv_f64 (dat->p51), r2, dat->p52);
117
p5 = svmla_x (pg, sixth, r2, p5);
118
p5 = svmul_x (pg, r, p5);
119
/* Compute p_i using recurrence relation:
120
p_{i+2} = (p_i + r * Q_{i+1} * p_{i+1}) * R_{i+1}. */
121
svfloat64_t qr5 = svld1rq (svptrue_b64 (), &dat->q5);
122
svfloat64_t qr6 = svld1rq (svptrue_b64 (), &dat->q6);
123
svfloat64_t qr7 = svld1rq (svptrue_b64 (), &dat->q7);
124
svfloat64_t qr8 = svld1rq (svptrue_b64 (), &dat->q8);
125
svfloat64_t qr9 = svld1rq (svptrue_b64 (), &dat->q9);
126
svfloat64_t p6 = svmla_x (pg, p4, p5, svmul_lane (r, qr5, 0));
127
p6 = svmul_lane (p6, qr5, 1);
128
svfloat64_t p7 = svmla_x (pg, p5, p6, svmul_lane (r, qr6, 0));
129
p7 = svmul_lane (p7, qr6, 1);
130
svfloat64_t p8 = svmla_x (pg, p6, p7, svmul_lane (r, qr7, 0));
131
p8 = svmul_lane (p8, qr7, 1);
132
svfloat64_t p9 = svmla_x (pg, p7, p8, svmul_lane (r, qr8, 0));
133
p9 = svmul_lane (p9, qr8, 1);
134
svfloat64_t p10 = svmla_x (pg, p8, p9, svmul_lane (r, qr9, 0));
135
p10 = svmul_lane (p10, qr9, 1);
136
/* Compute polynomial in d using pairwise Horner scheme. */
137
svfloat64_t p90 = svmla_x (pg, p9, d, p10);
138
svfloat64_t p78 = svmla_x (pg, p7, d, p8);
139
svfloat64_t p56 = svmla_x (pg, p5, d, p6);
140
svfloat64_t p34 = svmla_x (pg, p3, d, p4);
141
svfloat64_t p12 = svmla_x (pg, p1, d, p2);
142
svfloat64_t y = svmla_x (pg, p78, d2, p90);
143
y = svmla_x (pg, p56, d2, y);
144
y = svmla_x (pg, p34, d2, y);
145
y = svmla_x (pg, p12, d2, y);
146
147
y = svmls_x (pg, erfcr, scale, svmls_x (pg, d, d2, y));
148
149
/* Offset equals 2.0 if sign, else 0.0. */
150
svuint64_t sign = svand_x (pg, svreinterpret_u64 (x), 0x8000000000000000);
151
svfloat64_t off = svreinterpret_f64 (svlsr_x (pg, sign, 1));
152
/* Handle sign and scale back in a single fma. */
153
svfloat64_t fac = svreinterpret_f64 (svorr_x (pg, sign, dat->table_scale));
154
155
return svmla_x (pg, off, fac, y);
156
}
157
158
TEST_SIG (SV, D, 1, erfc, -6.0, 28.0)
159
TEST_ULP (SV_NAME_D1 (erfc), 1.21)
160
TEST_DISABLE_FENV (SV_NAME_D1 (erfc))
161
TEST_SYM_INTERVAL (SV_NAME_D1 (erfc), 0.0, 0x1p-26, 40000)
162
TEST_INTERVAL (SV_NAME_D1 (erfc), 0x1p-26, 28.0, 40000)
163
TEST_INTERVAL (SV_NAME_D1 (erfc), -0x1p-26, -6.0, 40000)
164
TEST_INTERVAL (SV_NAME_D1 (erfc), 28.0, inf, 40000)
165
TEST_INTERVAL (SV_NAME_D1 (erfc), 6.0, -inf, 40000)
166
CLOSE_SVE_ATTR
167
168